

Application Note Digital Dice

Abstract

This application note describes how to design a true random number generator from 1 to 6 with a 7-segment 1-digit LED display. The device is designed to replace commonly used dice.

This application note comes complete with design files which can be found in the References section.

Digital Dice

Contents

Ab	stract		1				
Co	ontents2						
Fig	ures.		2				
Tal	oles		2				
1	Term	s and Definitions	3				
2	Refer	ences	3				
3	Introduction4						
4	Devic	e Architecture	4				
	4.1	Entropy Generator	4				
	4.2	Linear Feedback Shift Register	5				
	4.3	Binary to 7-Segment Decoder	5				
	4.4 Control Unit						
	4.5 Macrocell Settings7						
5	o Conclusions						
Re	Revision History						

Figures

Figure 1: Digital Dice Schematic Diagram	. 4
Figure 2: GreenPAK6 Designer Project	. 4
Figure 3: Entropy Generator	. 5
Figure 4: LFSR	. 5
Figure 5: Binary to 7 Segment Decoder	. 6
Figure 6: Control Unit	

Tables

Table 1. LUT Settings	
Table 2: DFF Settings	. 7
Table 3: CNT/DLY Settings	. 7
Table 4: FILTER Settings	
Table 5: P DLY Settings	
Table 6: OSC Settings	
Table 7: PIN Settings	. 8

A	pp	lica	tion	N	ote
	r r				

Digital Dice

1 Terms and Definitions

DFF	D-type Flip Flop
LED	Light-emitting diode
LFSR	Linear feedback shift register
LUT	Lookup table

2 References

For related documents and software, please visit:

https://www.dialog-semiconductor.com/configurable-mixed-signal.

Download our free GreenPAK[™] Designer software [1] to open the .gp files [2] and view the proposed circuit design. Use the GreenPAK development tools [3] to freeze the design into your own customized IC in a matter of minutes. Dialog Semiconductor provides a complete library of application notes [4] featuring design examples as well as explanations of features and blocks within the Dialog IC.

- [1] GreenPAK Designer Software, Software Download, and User Guide, Dialog Semiconductor
- [2] AN-CM-292 Digital Dice.gp, GreenPAK Design File, Dialog Semiconductor
- [3] GreenPAK Development Tools, GreenPAK Development Tools Webpage, Dialog Semiconductor
- [4] GreenPAK Application Notes, GreenPAK Application Notes Webpage, Dialog Semiconductor
- [5] SLG46826V, Datasheet, Dialog Semiconductor.
- [6] AN-1200 True Random Number Generator Hardware

3 Introduction

This application note describes how to design Digital Dice, a true random number generator from 1 to 6. This device can be used instead of a commonly used dice. It has a 1-digit 7-segment LED display and two buttons: "Run" and "Display Previous". The Digital Dice can be powered from a single CR-2032 battery. It has no power-on switch due to negligibly low power consumption when idle.

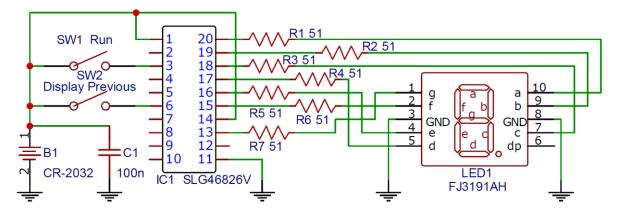


Figure 1: Digital Dice Schematic Diagram

4 **Device Architecture**

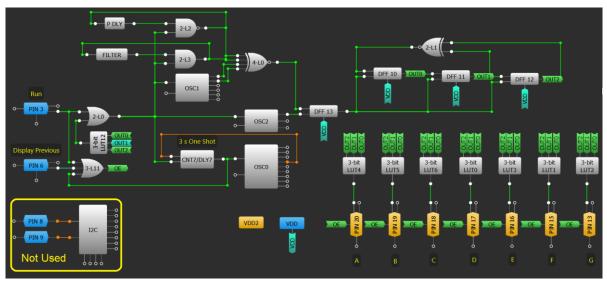


Figure 2: GreenPAK6 Designer Project

The design consists of the following blocks:

4.1 Entropy Generator

The entropy generator is built of four asynchronous oscillators. Two of which are built using an inverted closed-loop LUT with delay (1 MHz and 6.5 MHz). Two others are GreenPAK's OSC1 (2.048 MHz along with a divide by 3) and OSC2 (25 MHz divided by 2).

AD	DIICa	ition	Note

Revision 1.0

Digital Dice

Inputting a few asynchronous clock signals to XNOR gate is enough to get an unpredictable signal on its output (noise or entropy). But the macrocells within the SLG46826V allow making even more complicated solutions. Using one more oscillator and DFF we get a completely random signal.

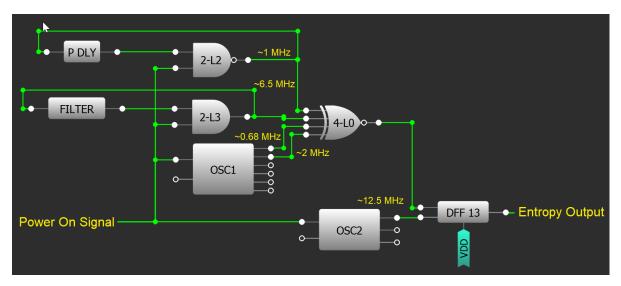


Figure 3: Entropy Generator

4.2 Linear Feedback Shift Register

The 3-bit LFSR is built using three DFFs and one XNOR gate. This block with each input clock generates a 3-bit pseudo-random number. Here, instead of a clock pulse, the noise signal goes into the LFSR's input, generating a true random 3-bit number.

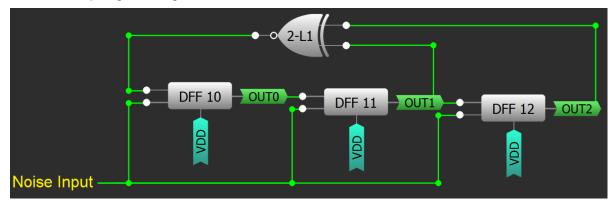


Figure 4: LFSR

4.3 Binary to 7-Segment Decoder

In order to convert the 3-bit random number generated by the LSFR, the Binary to 7-segment decoder is used, see Figure 3. The decoder is built of 3-bit LUTs.

Δn	nli	cat	ior	Ν	ote
		ou			ULC.

Revision 1.0

Digital Dice

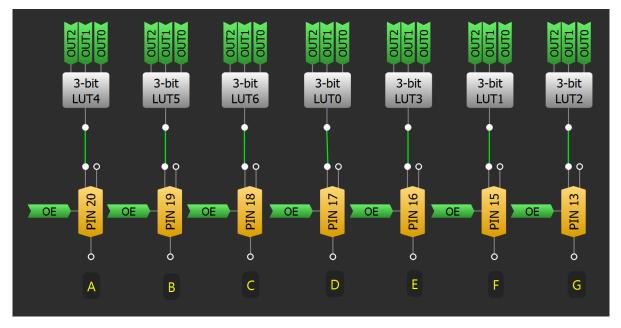


Figure 5: Binary to 7 Segment Decoder

4.4 Control Unit

The control unit is a part of the device designed to start it and stop after the 3-second period. Two pins are configured as inputs and two buttons must be connected from VDD to those pins. While the button "Run" is pressed, the device continuously generates random numbers. Right after the button is released, the generation stops and LFSR latches its outputs. The decoder subsequently drives a 7-segment display. After a 3 second period, the Digital Dice goes idle. The device is still powered on, but because all oscillations have been turned off, the current consumption is extremely low. This allows the device to "remember" the last generated random number. If the button "Display Previous" is pressed, the last generated random number will be displayed until the button is released. Because Digital Dice is designed to replace usual dice, the 3-bit LUT12 is used to restart it when "0" or "7" occurs. This ensures the device will generate a random number in the range of 1 to 6.

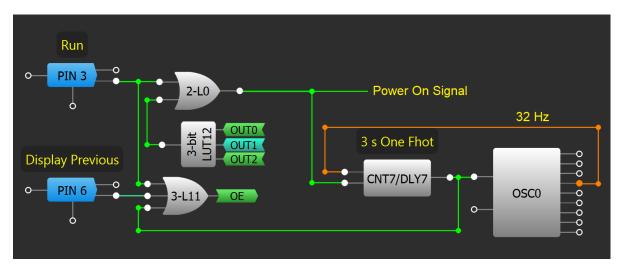


Figure 6: Control Unit

Application Note	Revision 1.0	04-Feb-2020
0500000	0.111	

Digital Dice

4.5 Macrocell Settings

For each macrocell, settings refer to the tables below.

Table 1. LUT Settings

IN3	IN2	IN1	INO	2-bit LUT0 OUT	2-bit LUT1 OUT	2-bit LUT2 OUT	2-bit LUT3 OUT	3-bit LUT0 OUT	3-bit LUT1 OUT	3-bit LUT2 OUT	3-bit LUT3 OUT	3-bit LUT4 OUT	3-bit LUT5 OUT	3-bit LUT6 OUT	3-bit LUT11 OUT	3-bit LUT12 OUT	4-bit LUT0 OUT
0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	1	1
0	0	0	1	1	0	1	0	0	0	0	0	0	1	1	1	0	0
0	0	1	0	1	0	1	0	1	0	1	1	1	1	0	1	0	0
0	0	1	1	1	1	0	1	1	0	1	0	1	1	1	1	0	1
0	1	0	0	-	-	-	-	0	1	1	0	0	1	1	1	0	0
0	1	0	1	-	-	-	-	1	1	1	0	1	0	1	1	0	1
0	1	1	0	-	-	-	-	1	1	1	1	1	0	1	1	0	1
0	1	1	1	-	-	-	-	0	0	0	0	0	0	0	1	1	0
1	0	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	0
1	0	0	1	-	-	-	-	-	-	-	-	-	-	-	-	-	1
1	0	1	0	-	-	-	-	-	-	-	-	-	-	-	-	-	1
1	0	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	0
1	1	0	0	-	-	-	-	-	-	-	-	-	-	-	-	-	1
1	1	0	1	-	-	-	-	-	-	-	-	-	-	-	-	-	0
1	1	1	0	-	-	-	-	-	-	-	-	-	-	-	-	-	0
1	1	1	1	-	-	-	-	-	-	-	-	-	-	-	-	-	1

Table 2: DFF Settings

Properties	DFFs 10, 11, 12, 13
Multi-function mode	DFF/LATCH
Mode	DFF
nSET/nRESET option	nRESET
Initial polarity	Low
Q output polarity	Non-Inverted (Q)

Table 3: CNT/DLY Settings

Properties	8-bit CNT7/DLY7 (MF)
Multi-function mode	CNT/DLY
Mode	One shot
Counter data	95

Application Note

Revision 1.0

04-Feb-2020

Digital Dice

Properties	8-bit CNT7/DLY7 (MF)
Edge select	Falling
DLY IN init. value	Bypass the initial
Output polarity	Non-inverted (OUT)
Mode signal sync.	Bypass
Clock	OSC0 /8

Table 4: FILTER Settings

Properties	8-bit CNT7/DLY7 (MF)
Туре	FILTER
Output polarity	Inverted (nOUT)

Table 5: P DLY Settings

Properties	8-bit CNT7/DLY7 (MF)
Mode	Both edge delay
Delay value	500 ns

Table 6: OSC Settings

Properties	OSC0	OSC1	OSC2
Control pin mode	Force on	Force on	Force on
OSC power mode	Auto Power On	Auto Power On	Auto Power On
Clock selector	OSC	OSC	OSC
'CLK' predivider by	8	1	2
'OUT0' second divider by	4	3	-
'OUT1' second divider by	1	1	-
'OUT' second divider by	-	-	1
Start with delay	-	-	Enable

Table 7: PIN Settings

Properties	PINs 3 and 6	PINs 13, 15 to 19	PIN 20
I/O selection	Digital input	Digital input/output	Digital input/output
Input mode	Digital in with Schmitt trigger	Digital in without Schmitt trigger	Digital in without Schmitt trigger
Output mode	None	2x push pull	2x push pull
Resistor	Pull Down	Floating	Floating
Resistor value	100K	Floating	Floating
100 uA pullup on input	None	None	Disable

Application Note

Revision 1.0

Digital Dice

5 Conclusions

The Digital Dice can be used as a replacement of usual dice in casinos or when playing any other games where dice are needed. It has an entropy generator that is constantly generating 3-bit random numbers while the button "Run" is pressed. It stops and displays the result only when the button is released, so the human factor also affects the generated random number. Four asynchronous oscillators together with human button push variability make the device completely and desirably unpredictable.

Application Note

Revision 1.0

04-Feb-2020

Digital Dice

Revision History

Revision	Date	Description
1.0	04-Feb-2020	Initial Version

Digital Dice

Status Definitions

Status	Definition
DRAFT	The content of this document is under review and subject to formal approval, which may result in modifications or additions.
APPROVED or unmarked	The content of this document has been approved for publication.

Disclaimer

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the specification and the design of the related semiconductor products, software and applications.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor's Standard Terms and Conditions of Sale, available on the company website (www.dialog-semiconductor.com) unless otherwise stated.

Dialog and the Dialog logo are trademarks of Dialog Semiconductor plc or its subsidiaries. All other product or service names are the property of their respective owners.

© 2020 Dialog Semiconductor. All rights reserved.

Contacting Dialog Semiconductor

United Kingdom (Headquarters)

Dialog Semiconductor (UK) LTD Phone: +44 1793 757700

Germany

Dialog Semiconductor GmbH Phone: +49 7021 805-0

The Netherlands

Dialog Semiconductor B.V. Phone: +31 73 640 8822

Email: enquiry@diasemi.com

North America

Dialog Semiconductor Inc. Phone: +1 408 845 8500

Japan

Dialog Semiconductor K. K. Phone: +81 3 5769 5100

Taiwan

Dialog Semiconductor Taiwan Phone: +886 281 786 222 Web site:

www.dialog-semiconductor.com

Hong Kong

Dialog Semiconductor Hong Kong Phone: +852 2607 4271

Korea

Dialog Semiconductor Korea Phone: +82 2 3469 8200

China (Shenzhen)

Dialog Semiconductor China Phone: +86 755 2981 3669

China (Shanghai)

Dialog Semiconductor China Phone: +86 21 5424 9058

Application Note