
EIA-232C Serial Interfacing

with the Neuron® Chip

January 1995 LONWORKS® Engineering Bulletin

Introduction
The Neuron Chip is a programmable device that includes a rich variety of
input/output capabilities. The Neuron Chip's firmware can configure the 11 I/O
pins of the processor in more than 30 different modes supported by software drivers.
Application programs running on the processor can then access this I/O
functionality through simple calls to the I/O driver functions. The Neuron Chip is
also a device that can communicate with other Neuron Chips over a variety of
networking media, such as twisted-pair wiring and power line, using the LonTalk®

protocol. It is thus an ideal device to implement applications for control networks.

Network
Trans-
ceiver

Neuron
Chip

.

.

.

Application
I/O

Networking
Medium

Figure 1. Architecture of a Neuron Chip-based node.

A LONWORKS® network uses a multi-drop concurrent-access architecture, so that
multiple nodes can communicate in a peer-to-peer fashion. The RS-485 standard
supports such a multi-drop architecture, allowing any node to communicate with
any other node on the network, with up to 32 nodes per physical channel. On the
other hand, the EIA-232C standard (formerly known as RS-232C) is a point-to-point
architecture, which allows only two devices to communicate with each other. The
standard was originally designed for communications between Data Terminal
Equipment (DTE) and Data Communications Equipment (DCE) such as modems.
However, it has been widely applied in recent years to other point-to-point
communications needs.

This engineering bulletin describes implementation of an EIA-232C asynchronous
serial interface that enables a Neuron Chip to communicate with another device
that employs the EIA-232C standard. This could be, for example, a PLC, machine

LONW ORKS Engineering Bulletin EIA-232C Serial
In te r fac ing

with the Neuron Chip

2

controller, CRT terminal, printer, card reader, or modem. The same Neuron Chip
can also be a part of a network communicating with the LonTalk protocol, forming a
gateway between an EIA-232C link and a LONWORKS network.

The Neuron Chip does not contain any UART hardware; instead, the serial I/O
interface is implemented in firmware, moving data a bit at a time using the Neuron
Chip's application CPU. If bit rates higher than 4,800 bps or serial data buffering
greater than one bit are required, then an external hardware UART should be used.
Input buffering is especially important. With a software UART, the Neuron Chip's
application CPU must be waiting at an input statement when the start bit of the
asynchronous character arrives. At 4,800 bps, a bit time is approximately 200 µs,
which is below the typical event latency for a Neuron C program. However, if
hardware buffering is used, the required latency is much greater. For example, if the
UART has a 16-character input FIFO, messages of up to 16 characters in length may
be received at any supported bit rate without loss of data, and the Neuron C program
may read this data at its leisure.

The PSG/2 and PSG-10 Programmable Serial Gateways are suitable for handling
high speed asynchronous data streams. They include a Neuron 3150 Chip with a
5MHz or 10MHz input clock, a socket for a PROM to contain system and application
firmware, and a 16550-compatible UART. This UART provides sixteen characters of
serial input and output data buffering, and bit rates of up to 115,200 bps. A low-level
software library for creating serial gateway applications is included with LonBuilder®

and NodeBuilder™ development systems. For more details on the Programmable
Serial Gateway, see the Serial LonTalk Adapter and Serial Gateway User's Guide.

For applications where a serial interface to a host computer is required, the SLTA/2
or LTS-10 Serial LonTalk Adapters may be used. These are pre-programmed serial
interface devices based on the same hardware as the Programmable Serial Gateway
devices. The on-board firmware communicates with a driver on the host computer,
and supports all network management functions, as well as remote access via
modems. The Serial LonTalk Adapter firmware moves the LonTalk application
layer to the host computer, giving it the capability to send and receive network
variables and to implement LONMARK objects. Source code for DOS and UNIX
drivers is included. For more details, see the Serial LonTalk Adapter and Serial
Gateway User's Guide.

This engineering bulletin only describes the use of the Neuron C serial I/O object,
which is implemented as a software UART.

Asynchronous Data Format
The Neuron Chip receives and transmits serial data using eight-bit character frames,
with one start bit and one stop bit. The EIA-232C standard defines two voltage levels.

LONW ORKS Engineering Bulletin EIA-232C Serial
In te r fac ing

with the Neuron Chip

3

The negative voltage corresponds to logic level 1 and the positive voltage to logic
level 0. When the line is idle, it is at logic level 1. A character frame begins with a
start bit, which holds the line at 0 for one bit time. Then the eight data bits are
transmitted with the least significant bit first. Finally, the line returns to 1 for at least
one bit time, forming the stop bit. A new character frame may start at any time after
the end of the stop bit. This asynchronous data format is commonly used with the
EIA-232C standard interface, although strictly speaking, it is not a part of the
standard. It is termed asynchronous since it is not necessary to share a clock between
the transmitting and receiving devices. Both devices can use independent local
clocks running at the same nominal frequency. Actual synchronization is on a
character-by-character basis using the start and stop bits.

logic 1

76543210

start bit stop bit

logic 0

data bits

character frame

Figure 2. Asynchronous data format.

Hardware Considerations
The Neuron Chip supports this asynchronous serial data format using the serial I/O
object. The serial output object is implemented on IO10 pin and the serial input
device on the IO8 pin . The nine remaining I/O pins can be used for other I/O objects.
The I/O pins have TTL input levels and standard CMOS output levels. Devices such
as the Motorola MC145407 may be used to convert these levels to and from EIA-232C
voltage levels. Figure 3 shows a typical schematic for a bi-directional EIA-232C
interface for a Neuron Chip configured as Data Terminal Equipment (DTE). The
interface chip chosen is a 5-volt-only driver/receiver that uses an on-chip charge
pump to generate the EIA-232C voltage levels with the help of four external
capacitors.

LONW ORKS Engineering Bulletin EIA-232C Serial
In te r fac ing

with the Neuron Chip

4

MC145407

7

8

14

13

Optional

RTS

CTS

EIA-232 DTE
interface Neuron Chip

 3150 or 3120xx

5 16RxD IO8
serial in

IO2
bit in

IO3
bit out

6 15TxD IO10
serial out

20

19

18

17

1

2

3

4

10 µF

10 µF

+5V

10 µF

10 µF

GND

+

+
+

+

Figure 3. Typical EIA-232C interface circuit.

If additional modem control lines such as CDET, DSR, DTR, CTS, and RTS are
required, then any of the other Neuron Chip I/O lines may be configured as bit
input or output lines under control of the application software. Not all of these
signals are active high. The application developer should check which sense is valid
and handle each one of them appropriately. For full details on the modem control
lines, see the Electronics Industries Association EIA-232C Standard document.

Software Considerations
The designer uses statements in the Neuron C programming language to declare
and activate serial I/O objects. This provides a high-level interface that frees the
application designer from considerations of bit timing, data framing, and character
assembly and disassembly.

Serial Output
To declare a serial output object, a statement of the form should be used:

IO_10 output serial baud (constant) io_object_name;

For example, the following statement declares the device named CRT_screen as a
serial output object operating at 1200bps:

LONW ORKS Engineering Bulletin EIA-232C Serial
In te r fac ing

with the Neuron Chip

5

IO_10 output serial baud(1200) CRT_screen;

To output data to the serial device, use a statement of the form:

io_out(io_object_name, buffer_pointer, character_count);

For example, the following statement sends the twelve ASCII characters "Hello,
world" in serial format on the IO10pin:

io_out(CRT_screen, "Hello, world", 12);

The parameters to the io_out() function call for a serial output object are:

io_object_name A name declared as a serial output object

buffer_pointer A parameter of type (const char *) pointing to an array
of characters

character_count A parameter of type (unsigned int)

The io_out() function call suspends execution of the application program until all
the characters have been transmitted on the output pin. For example, transmitting
120 characters at 600bps will suspend the application for 120 * (1 + 8 + 1) / 600 = 2
seconds. During serial I/O, the network and media access CPUs on the Neuron Chip
continue to execute the network protocol, but the application processor does not
execute other tasks to handle any generated events. Application designers should
take this into account.

The allowable values for the constant expression used to specify the bit rate are 600,
1200, 2400, and 4800, which refer to the serial bit rate at a Neuron Chip input clock
rate of 10 MHz. If other input clock rates are used, refer to Table 1.1.

Input Clock (MHz) baud(600) baud(1200) baud(2400) baud(4800)

10.0 600 1,200 2,400 4,800
5.0 300 600 1,200 2,400
2.5 150 300 600 1,200
1.25 75 150 300 600
0.625 37.5 75 150 300

Table 1. Serial bit rates for different Neuron Chip input clock rates.

Serial Input
To declare a serial input object, a statement of the form should be used:

IO_8 input serial baud(constant) IOobjectName;

For example, the following statement declares the device named keyboard as a
serial input object, operating at 600 bps:

LONW ORKS Engineering Bulletin EIA-232C Serial
In te r fac ing

with the Neuron Chip

6

IO_8 input serial baud(600) IOkeyboard;

To input data from the serial device, a statement of the form should be used:

num_chars_received =

io_in(IOobject_name, pBuffer, maxCharacterCount);

For example, the following statement causes the Neuron Chip to wait for up to
twelve serial characters to be received in serial format on the IO_8 pin:

numCharsReceived = io_in(IOkeyboard, inputBuffer, 12);

The parameters to the io_in() function call for a serial input device are:

IOobjectName A name declared as a serial input object

pBuffer A parameter of type (char *) pointing to an array of
characters to accept the received data

maxCharacterCount A parameter of type (unsigned int)

The io_in() function returns a value of type (unsigned int), indicating the
number of characters actually received. Suitable declarations for the above example
are:

char inputBuffer[12];
unsigned numCharsReceived;

Note that in the C language, an object of type (char[]) is automatically promoted
to type (char *) in the context of a function call. It is the designer's responsibility
to ensure that the input buffer for serial input is large enough to contain the
number of characters requested. If the io_in() call specifies a maximum character
count that exceeds the size of the input buffer, unpredictable behavior will result.

The io_in() function suspends application processing until it is complete. This
occurs at the first of the following:

1. The number of characters specified in the maxCharacterCount parameter of
the function call have all been received,

2. The line has been continuously at the idle level for 20 character times, for
example 166.7 msec at 1200 bps, or

3. A framing error has occurred – an expected start bit or stop bit has the wrong
polarity.

In all cases, the returned value of the function is the number of characters actually
received and stored in the buffer.

The Neuron Chip's application CPU is suspended during execution of the serial
io_in() function. This means that it cannot process other I/O events, timer
expirations, network variable updates, or incoming messages while it is waiting for

LONW ORKS Engineering Bulletin EIA-232C Serial
In te r fac ing

with the Neuron Chip

7

input characters on the serial port. If no input occurs for 20 character times, then
execution proceeds after the io_in() call. The application can simply tickle the
watchdog timer to avoid resetting the node, and re-enter the serial input call. This
has the advantage that the application is unlikely to miss any input characters,
because it is almost always in the tight loop waiting for input. For example:

#include <control.h> // define 'watchdog_update'
IO_8 input serial baud(2400) IOcharIn; // serial input device
char inputChar; // place to store received

// character
unsigned numChars;
when(serial input is desired) {

do { // tight loop until character
//is received

numChars = io_in(IOcharIn,&inputChar, 1); // read one character
watchdog_update(); // avoid watchdog timeouts

} while(numChars == 0); // if error or time_out,
//try again

process_char(inputChar); // process this character
}

However, the node is frequently required to process other input events besides the
serial character input. In this case, the application processor must periodically
return to the event scheduler to handle the other events. This has the
disadvantage that the application processor cannot handle serial input while it is
processing those events. There is a chance that some characters will be missed,
depending on the relative time taken to process these other events, and how fast the
application processor can return to the io_in() call. For example, to process other
events every time the io_in() call returns, the following code can be used:

IO_8 input serial baud(2400) IOcharIn; // serial input device
char inputChar; // place to store received

// character
unsigned numChars;

when (1) { // do this every pass through
// the scheduler

numChars = io_in(IOcharIn, &inputChar, 1); // read one character

if (numChars != 0) ProcessChar(inputChar);

// process this input

// character

} // end of task, return to

// scheduler to handle other

// events

LONW ORKS Engineering Bulletin EIA-232C Serial
In te r fac ing

with the Neuron Chip

8

when (other events)........ // process NV updates,

//messages etc.

If the io_in() call is successful, and a character has been received, the io_in() call
will return to the calling task approximately at the center of the stop bit. The
Neuron C application must re-enter the io_in() call before the beginning of the
next start bit. If the characters are being transmitted back-to-back with one stop bit,
that means that the application has approximately half of a bit time to process the
character. At 1200bps, that is about 400µs. If more time is desired, it will be
advantageous to have the sending device use two or more stop bits, since this will
extend the idle period before the start bit of the next character. The best solution
may very well be to spend most of the time waiting for serial input to occur, and
occasionally returning to the scheduler to check for network and timer events.

Synchronizing with an External Serial Device
Because the serial input object is implemented using software-driven serial I/O,
there are a few restrictions in the use of serial input:

• The application program must be waiting at an io_in() function call when the
start bit of the character is received. If the call to io_in() is made after the
beginning of the start bit of a character, an immediate framing error is likely. If
the call to io_in() is made after the end of a character, then that character will
be totally missed.

• If the start bit of the first character is delayed more than 20 character times after
calling the io_in() function, then the call will time out and no characters will
be returned. A time-out will also occur if there is a pause of more than 20
character times between the end of one character and the beginning of the next.
In this case, the call will return the characters received up until the time-out.

Solutions to these limitations depend on the device that is generating the input
characters. If the input device is not an operator typing at a keyboard, but rather
another processor, then some form of handshaking can be implemented. For
example, the sending device can indicate its desire to transmit by raising a request to
send (RTS) signal connected to a bit input of the Neuron Chip. The Neuron Chip
detects the request to send, and activates a bit output that indicates to the sending
device that the Neuron Chip is ready to receive data (a clear-to-send, or CTS signal).
The Neuron Chip then immediately enters the io_in() call for the serial input
object. The external device, when it receives the CTS indication, waits until the
Neuron Chip is in the io_in() call, and then transmits its characters. If the number
of characters transmitted is fixed in advance, then the io_in() call can specify this
number of characters. Alternatively, it can wait 20 character times for the time-out,
or the input device can generate a break condition on the line at the end of the data,

LONW ORKS Engineering Bulletin EIA-232C Serial
In te r fac ing

with the Neuron Chip

9

causing a framing error and termination of input. Or, the Neuron Chip can read a
single character at a time, and look for a terminating character such as a carriage
return. The following example assumes that the input line is sent without pauses
greater than 20 character times between the characters, and that a carriage return is
always sent at the end of the line, which is never longer than 120 characters.
IO_3 output bit CTS; // clear to send output
IO_2 input bit RTS; // request to send input
IO_8 input serial RXD; // serial data input
char inputBuf[120]; // RAM buffer for input line
char * pBbuf; // pointer into buffer

when (io_changes(RTS) to 1) { // wait for request to send
pBuf = inputBuf; // initialize buffer pointer
io_out(CTS, 1); // raise clear to send
do {

(void)io_in(RXD, pBuf, 1); // get one character into buffer
} while (*pBbuf++ != '\r'); // keep going if not CR
io_out(CTS, 0); // drop clear to send
ProcessBuffer(); // handle input line

}

Using Serial I/O to Interface with a CRT Terminal

If the device generating characters is an operator typing at a keyboard, then there are
user interface issues to be considered. Normally, an operator will type with
unpredictable pauses between characters. These pauses will probably exceed the 20
character times time-out limit. The serial io_in() function does not check for any
input terminators such as the ASCII carriage return character, which is
conventionally used to indicate the end of user input. It also does not echo input
characters, nor does it recognize any input line editing characters such as back-
spaces, as would be expected by a user typing at an interactive terminal device.

If this kind of functionality is required, it must be implemented by the application
code calling io_in() and io_out() to perform the basic I/O. The following code
shows how some of these interactive terminal capabilities might be implemented.
The function GetLine() reads characters one at a time from the serial input device,
processing some control characters and echoing printable characters to the serial
output device. A null-terminated string is returned in inputBuf.
Following the function GetLine() is a demonstration task that calls GetLine() to
read a line from the keyboard and then echoes it back to the screen.

LONW ORKS Engineering Bulletin EIA-232C Serial
In te r fac ing

with the Neuron Chip

10

// Sample EIA-232 driver for an interactive serial ASCII keyboard device

#include <control.h>
IO_8 input serial baud(2400) IOcharIn; // serial input device
IO_10 output serial baud(2400) IOcharOut; // serial output device

char inputBuf[120]; // input buffer for GetLine

unsigned GetLine(void) {
// function waits for input line, returns number of characters received

char * pInputBuf; // next place to store received character
char * pEndOfBuf; // last byte in buffer
char thisChar; // character being processed
unsigned numChars;

pInputBuf = inputBuf; // initialize buffer pointers
pEndOfBuf = inputBuf + sizeof(inputBuf) - 1;

while (pInputBuf < pEndOfBuf) { // don't read past end of buffer

do {
numChars = io_in(IOcharIn, pInputBuf, 1); // read one character
watchdog_update(); // avoid watchdog timeouts

 } while (numChars == 0); // if error or time_out, try again

thisChar = *pInputBuf & 0x7F; // discard any parity bit
if (thisChar == '\r') break; // exit loop if a carriage return

if ((thisChar == '\b') || (thisChar == 0x7F)) {
// backspace or rubout

if (pInputBuf > inputBuf) { // buffer is not empty
pInputBuf--; // forget last character
io_out(IOcharOut, "\b \b", 3); // erase character on screen

}
continue;

}
if (thisChar < ' ') continue; // ignore other control characters
*pInputBuf = thisChar; // store this character
io_out(IOcharOut, pInputBuf++, 1);

// echo this character, increment pointer
} // end while

io_out(IOcharOut, "\r\n", 2); // send CR LF at end of line
*pInputBuf = '\0'; // null terminate string
return (unsigned)(pInputBuf - inputBuf);

} // return number of characters

// Demonstration task for the GetLine() function
unsigned numChars;

LONW ORKS Engineering Bulletin EIA-232C Serial
In te r fac ing

with the Neuron Chip

11

Disclaimer

Echelon Corporation assumes no responsibility for any errors contained herein.
No part of this document may be reproduced, translated, or transmitted in any form without permission from Echelon.

Part Number 005-0008-01 Rev. D

©1991 - 1995 Echelon Corporation. ECHELON,
LON, Neuron LonTalk, LONWORKS ,3150, and
3120 are U.S. registered trademarks of Echelon
Corporation. Other names may be trademarks of
their respective companies. Some of the
LONWORKS tools are subject to certain Terms
and Conditions. For a complete explanation of
these Terms and Conditions, please call 1-800-
258-4LON or +1-415-855-7400

Echelon Corporation
4015 Miranda Avenue
Palo Alto, CA 94304
Telephone (415) 855-7400
Fax (415) 856-6153

Echelon Europe Ltd.
Elsinore House,
77 Fulham Palace Road,
Hammersmith,
London W6 8JA, England.
Telephone +44-81-563-7077

Fax +44-81-563-7055

Echelon Japan K.K.
Kamino Shoji Building 8F
25-13 Higashi Gotanda 1-chome
Shinagawa-Ku, Tokyo 141, Japan
Telephone 011-81-3-3440-7781
Fax 011-81-3-3440-7782

when (TRUE) { // do forever
numChars = GetLine(); // read a line
if (numChars != 0) {

io_out(IOcharOut, output_buf, numChars); // echo line
io_out(IOcharOut, "\r\n", 2); // send CR LF

}
}

}

