General Description

The SLG59H1008V is a high-performance $13.3 \mathrm{~m} \Omega \mathrm{NMOS}$ power switch designed to control 12 V or 24 V power rails up to 4 A . Using a proprietary MOSFET design, the SLG59H1008V achieves a stable $13.3 \mathrm{~m} \Omega$ RDS $_{\text {ON }}$ across a wide input voltage range. In combining novel FET design and copper pillar interconnects, the SLG59H1008V package also exhibits a low thermal resistance for high-current operation.

Designed to operate over a $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ range, the SLG59H1008V is available in a low thermal resistance, RoHS-compliant, $1.6 \times 3.0 \mathrm{~mm}$ STQFN package.

Features

- UL2367 Certified - File Number E468659
- Wide Operating Input Voltage: 12 V or 24 V
- Maximum Continuous Current: 4 A
- Automatic nFET SOA Protection
- High-performance MOSFET Switch

Low $\mathrm{RDS}_{\mathrm{ON}}: 13.3 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}$
Low $\Delta \mathrm{RDS}_{\mathrm{ON}} / \Delta \mathrm{V}_{\mathrm{IN}}:<0.05 \mathrm{~m} \Omega / \mathrm{V}$
Low $\Delta \mathrm{RDS}_{\mathrm{ON}} / \Delta \mathrm{T}$: $<0.06 \mathrm{~m} \Omega /{ }^{\circ} \mathrm{C}$

- Pin-selectable $12 \mathrm{~V} / 24 \mathrm{~V}$ Input Overvoltage and Undervoltage Lockout
- Capacitor-adjustable Inrush Current Control
- Two stage Current Limit Protection:

Resistor-adjustable Active Current Limit Internal Short-circuit Current limit

- Open Drain FAULT Signaling
- MOSFET Current Analog Output Monitor: $10 \mu \mathrm{~A} / \mathrm{A}$
- Fast $4 \mathrm{k} \Omega$ Output Discharge
- Pb-Free / Halogen-Free / RoHS Compliant Packaging

Pin Configuration

$1.6 \times 3.0 \mathrm{~mm}, 0.40 \mathrm{~mm}$ pitch
(Top View)

Applications

- Enterprise Computing \& Telecom Equipment 5 V and 12 V Point-of-Load Power Distribution
- PCI/PCle Adapter Cards
- General-purpose High-voltage, Power-Rail Switching
- Multifunction Printers
- Fan Motor Control

Block Diagram and 3 A Typical Application Circuit

Pin Description

Pin \#	Pin Name	Type	Pin Description
1	ON	Input	A low-to-high transition on this pin initiates the operation of the SLG59H1008V's state machine. ON is an asserted HIGH, level-sensitive CMOS input with $\mathrm{ON} \mathrm{V}_{\mathrm{IL}}<0.3 \mathrm{~V}$ and $\mathrm{ON}_{-} \mathrm{V}_{\mathrm{IH}}>0.9 \mathrm{~V}$. As the ON pin input circuit does not have an internal pull-down resistor, connect this pin to a general-purpose output (GPO) of a microcontroller, an application processor, or a system controller, do not allow this pin to be open-circuited.
2	GND	GND	Pin 2 is a low-current GND terminal for the SLG59H1008V. Connect directly to Pin 3.
3	GND	GND	Pin 3 is the main ground connection for the SLG59H1008V's internal charge pump, its gate driver and current-limit circuits as well as its internal state machine. Therefore, use a short, stout connection from Pin 3 to the system's analog or power plane.
4-8	VIN	MOSFET	VIN supplies the power for the operation of the SLG59H1008V, its internal control circuitry, and the drain terminal of the nFET power switch. With 5 pins fused together at VIN, connect a $47 \mu \mathrm{~F}$ (or larger) low-ESR capacitor from this pin to ground. Capacitors used at VIN should be rated at 50 V or higher.
9-13	VOUT	MOSFET	Source terminal of n-channel MOSFET (5 pins fused for VOUT). Connect a $47 \mu \mathrm{~F}$ (or larger) low-ESR capacitor from this pin to ground. Capacitors used at VOUT should be rated at 50 V or higher.
14	SEL	Input	As a low logic-level CMOS input with SEL_ $\mathrm{V}_{\mathrm{IL}}<0.3 \mathrm{~V}$ and SEL_ $\mathrm{V}_{\mathrm{IH}}>1.65 \mathrm{~V}$, SEL selects one of two undervoltage/overvoltage lockout windows. When SEL = LOW, the V_{IN} undervoltage/overvoltage lockout window is set for $12 \mathrm{~V} \pm 10 \%$ applications. When SEL $=$ HIGH, the V_{IN} undervoltage/overvoltage lockout window is set for $24 \mathrm{~V} \pm 5 \%$ applications. See the Electrical Characteristics table for additional information.
15	$\overline{\text { FAULT }}$	Output	An open drain output, $\overline{\text { FAULT }}$ is asserted within $\overline{T F A U L T}_{\text {LOw }}$ when a $\mathrm{V}_{\text {IN }}$ undervoltage, $\mathrm{V}_{\text {IN }}$ overvoltage, a current-limit, or an over-temperature condition is detected. $\overline{\text { FAULT }}$ is deasserted within $\mathrm{TFAULT}_{\mathrm{HIGH}}$ when the fault condition is removed. Connect an $100 \mathrm{k} \Omega$ external resistor from the $\overline{\text { FAULT }}$ pin to local system logic supply.
16	CAP	Output	A low-ESR, stable dielectric, ceramic surface-mount capacitor connected from CAP pin to GND sets the $\mathrm{V}_{\text {OUT }}$ slew rate and overall turn-on time of the SLG59H1008V. For best performance, the range for $\mathrm{C}_{\text {SLEW }}$ values are $10 \mathrm{nF} \leq \mathrm{C}_{\text {SLEW }} \leq 20 \mathrm{nF}$ - please see typical characteristics for additional information. Capacitors used at the CAP pin should be rated at 10 V or higher. Please consult Applications Section on how to select $\mathrm{C}_{\text {SLEW }}$ based on $\mathrm{V}_{\text {OUT }}$ slew rate and loading conditions.
17	IOUT	Output	IOUT is the SLG59H1008V's power MOSFET load current monitor output. As an analog current output, this signal when applied to a ground-reference resistor generates a voltage proportional to the current through the n -channel MOSFET. The IOUT transfer characteristic is typically $10 \mu \mathrm{~A} / \mathrm{A}$ with a voltage compliance range of $0.5 \mathrm{~V} \leq \mathrm{V}_{\text {IOUT }} \leq 4 \mathrm{~V}$. Optimal $\mathrm{I}_{\mathrm{OUT}}$ linearity is exhibited for $0.5 \mathrm{~A} \leq \mathrm{I}_{\mathrm{DS}} \leq 4 \mathrm{~A}$. In addition, it is recommended to bypass the IOUT pin to GND with a 0.18 nF capacitor.
18	RSET	Input	A 1\%-tolerance, metal-film resistor between $20 \mathrm{k} \Omega$ and $91 \mathrm{k} \Omega$ sets the SLG59H1008V's active current limit. A $91 \mathrm{k} \Omega$ resistor sets the SLG 59 H 1008 V 's active current limit to 1 A and a $20 \mathrm{k} \Omega$ resistor sets the active current limit to 4.5 A .

Ordering Information

Part Number	Type	Production Flow
SLG59H1008V	STQFN 18L FC	Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
SLG59H1008VTR	STQFN 18L FC (Tape and Reel)	Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

A $13.3 \mathrm{~m} \Omega, 4$ A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

Absolute Maximum Ratings

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
V_{IN} to GND	Power Switch Input Voltage to GND	Continuous	-0.3	--	30	V
		Maximum pulsed V_{IN}, pulse width < 0.1 s	--	--	32	V
$V_{\text {OUt }}$ to GND	Power Switch Output Voltage to GND		-0.3	--	V_{IN}	V
ON, SEL, CAP, RSET, IOUT, and FAULT to GND	ON, SEL, CAP, RSET, IOUT, and FAULT Pin Voltages to GND		-0.3	--	7	V
$\mathrm{T}_{\text {S }}$	Storage Temperature		-65	--	150	${ }^{\circ} \mathrm{C}$
ESD ${ }_{\text {HBM }}$	ESD Protection	Human Body Model	2000	--	--	V
ESD ${ }_{\text {CDM }}$	ESD Protection	Charged Device Model	500	--	--	V
MSL	Moisture Sensitivity Level			1		
$\theta_{\text {JA }}$	Thermal Resistance	$1.6 \times 3.0 \mathrm{~mm}$ 18L STQFN; Determined with the device mounted onto a $1 \mathrm{in}^{2}, 1 \mathrm{oz}$. copper pad of FR-4 material	--	40	--	${ }^{\circ} \mathrm{C} / \mathrm{W}$
MOSFET IDS ${ }_{\text {CONT }}$	Continuous Current from VIN to VOUT	$\mathrm{T}_{\mathrm{J}}<150^{\circ} \mathrm{C}$	--	--	4	A
MOSFET IDS ${ }_{\text {PEAK }}$	Peak Current from VIN to VOUT	Maximum pulsed switch current, pulse width < 1 ms	--	--	6	A

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics

$12 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 24 \mathrm{~V} ; \mathrm{C}_{\text {IN }}=47 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IN }}$	Operating Input Voltage		10.8	--	25.2	V
$\mathrm{V}_{\text {IN(OVLO }}$	$\mathrm{V}_{\text {IN }}$ Overvoltage Lockout Threshold	$\mathrm{V}_{\text {IN }} \uparrow$; SEL $=$ HIGH	25.3	27	28.5	V
		$\mathrm{V}_{\text {IN }} \uparrow$; SEL = LOW	13.3	13.7	14.5	V
$\mathrm{V}_{\text {IN(UVLO) }}$	$\mathrm{V}_{\text {IN }}$ Undervoltage Lockout Threshold	$\mathrm{V}_{\text {IN }} \downarrow$; SEL $=$ HIGH	19.5	20.5	21.5	V
		$\mathrm{V}_{\text {IN }} \downarrow$; SEL = LOW	9.7	10.2	10.7	V
I_{Q}	Quiescent Supply Current	$\mathrm{ON}=\mathrm{HIGH} ; \mathrm{I}_{\mathrm{DS}}=0 \mathrm{~A}$	--	0.5	0.6	mA
$\mathrm{I}_{\text {SHDN }}$	OFF Mode Supply Current	$\mathrm{ON}=\mathrm{LOW} ; \mathrm{I}_{\mathrm{DS}}=0 \mathrm{~A}$	--	1	3	$\mu \mathrm{A}$
$\mathrm{RDS}_{\mathrm{ON}}$	ON Resistance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C} ; \mathrm{I}_{\mathrm{DS}}=0.1 \mathrm{~A}$	--	13.3	14	$\mathrm{m} \Omega$
		$\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C} ; \mathrm{I}_{\mathrm{DS}}=0.1 \mathrm{~A}$	--	17	18.5	$\mathrm{m} \Omega$
MOSFET IDS	Current from VIN to VOUT	Continuous	--	--	4	A
$\mathrm{I}_{\text {LIMIT }}$	Active Current Limit, $\mathrm{I}_{\text {ACL }}$	$\mathrm{V}_{\text {OUT }}>0.5 \mathrm{~V} ; \mathrm{R}_{\text {SET }}=30.1 \mathrm{k} \Omega$	3.0	3.19	3.5	A
	Short-circuit Current Limit, ISCL	$\mathrm{V}_{\text {OUT }}<0.5 \mathrm{~V}$	--	0.5	-	A
$\mathrm{T}_{\text {ACL }}$	Active Current Limit Response Time	$\mathrm{R}_{\mathrm{SET}}=51.6 \mathrm{k} \Omega$	--	120	--	$\mu \mathrm{s}$
$\mathrm{R}_{\text {DISCHRG }}$	Output Discharge Resistance		3.5	4.4	5.3	k Ω
lout	MOSFET Current Analog Monitor Output	$\mathrm{I}_{\mathrm{DS}}=1 \mathrm{~A}$	9.3	10	10.7	$\mu \mathrm{A}$
		$\mathrm{I}_{\mathrm{DS}}=3 \mathrm{~A}$	28.5	30	31.5	$\mu \mathrm{A}$

A $13.3 \mathrm{~m} \Omega, 4$ A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output
Electrical Characteristics (continued)
$12 \mathrm{~V} \leq \mathrm{V}_{\text {IN }} \leq 24 \mathrm{~V} ; \mathrm{C}_{\text {IN }}=47 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
TIOUT	Iout Response Time to Change in Main MOSFET Current	$\mathrm{C}_{\text {IOUT }}=180 \mathrm{pF} ;$ Step load 0 to $2.4 \mathrm{~A} ; 0 \%$ to $90 \% \mathrm{I}_{\text {OUT }}$	--	45	--	$\mu \mathrm{s}$
C LOAD	Output Load Capacitance	$\mathrm{C}_{\text {LOAD }}$ connected from VOUT to GND	--	47	--	$\mu \mathrm{F}$
Ton_Delay	ON Delay Time	$\begin{aligned} & 50 \% \text { ON to } 10 \% \mathrm{~V}_{\text {OUT }} \uparrow ; \\ & \mathrm{V}_{\text {IN }}=12 \mathrm{~V} ; \mathrm{C}_{\text {SLEW }}=10 \mathrm{nF} ; \\ & \mathrm{R}_{\text {LOAD }}=100 \Omega, \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F} \end{aligned}$	480	600	720	$\mu \mathrm{s}$
		$\begin{aligned} & 50 \% \text { ON to } 10 \% \mathrm{~V}_{\text {OUT }} \uparrow ; \\ & \mathrm{V}_{\text {IN }}=24 \mathrm{~V} ; \mathrm{C}_{\text {SLEW }}=10 \mathrm{nF} ; \\ & \mathrm{R}_{\text {LOAD }}=100 \Omega, \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F} \end{aligned}$	0.8	1.0	1.2	ms
$\mathrm{T}_{\text {Total_ON }}$	Total Turn ON Time	50% ON to $90 \% \mathrm{~V}_{\text {OUT }} \uparrow$	Set by External $\mathrm{C}_{\text {SLEW }}{ }^{1}$			ms
		$\begin{aligned} & 50 \% \text { ON to } 90 \% \mathrm{~V}_{\text {OUT }} \uparrow ; \\ & \mathrm{V}_{\text {IN }}=12 \mathrm{~V} ; \mathrm{C}_{\text {SLEW }}=10 \mathrm{nF} ; \\ & \mathrm{R}_{\text {LOAD }}=100 \Omega, \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F} \end{aligned}$	2.9	3.6	4.3	ms
		$\begin{aligned} & 50 \% \text { ON to } 90 \% \mathrm{~V}_{\text {OUT }} \uparrow ; \\ & \mathrm{V}_{\text {IN }}=24 \mathrm{~V} ; \mathrm{C}_{\text {SLEW }}=10 \mathrm{nF} ; \\ & \mathrm{R}_{\text {LOAD }}=100 \Omega, \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F} \end{aligned}$	5.7	7.1	8.5	ms
		$10 \% \mathrm{~V}_{\text {OUT }}$ to $90 \% \mathrm{~V}_{\text {OUT }} \uparrow$	Set by External $\mathrm{C}_{\text {SLEW }}{ }^{1}$			V/ms
$\mathrm{V}_{\text {OUT(SR) }}$	$\mathrm{V}_{\text {OUt }}$ Slew rate	$10 \% V_{\text {OUT }}$ to $90 \% V_{\text {OUT }} \uparrow$; $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}$ or 24 V ; $\mathrm{C}_{\text {SLEW }}=10 \mathrm{nF}$; $R_{\text {LOAD }}=100 \Omega, C_{\text {LOAD }}=10 \mu \mathrm{~F}$	2.7	3.2	3.9	V/ms
TOFF_Delay	OFF Delay Time	$\begin{aligned} & 50 \% \text { ON to } V_{\text {OUT }} \text { Fall Start } \downarrow ; \\ & V_{\text {IN }}=12 V \text { or } 24 \mathrm{~V} ; \\ & R_{\text {LOAD }}=100 \Omega \text {, No } C_{\text {LOAD }} \end{aligned}$	--	15	--	$\mu \mathrm{s}$
$\mathrm{T}_{\text {FALL }}$	$\mathrm{V}_{\text {Out }}$ Fall Time	$\begin{aligned} & 90 \% \mathrm{~V}_{\text {OUT }} \text { to } 10 \% \mathrm{~V}_{\text {OUT }} ; \\ & \text { ON = HIGH-to-LOW } ; \\ & \mathrm{V}_{\text {IN }}=12 \mathrm{~V} \text { or } 24 \mathrm{~V} ; \\ & \mathrm{R}_{\text {LOAD }}=100 \Omega \text {, No C C }{ }_{\text {LOAD }} \end{aligned}$	10.4	12.7	14.3	$\mu \mathrm{s}$
T $\overline{\text { FAULT }}_{\text {Low }}$	$\overline{\text { FAULT Assertion Time }}$	Abnormal Step Load Current event to $\overline{\text { FAULT }} \downarrow ; I_{\text {ACL }}=1 \mathrm{~A} ; \mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}$; $R_{\text {SET }}=91 \mathrm{k} \Omega$; switch in 20Ω load	--	80	--	$\mu \mathrm{s}$
T $\overline{\mathrm{FAULT}}_{\text {HIGH }}$	$\overline{\text { FAULT }}$ De-assertion Time	Delay to $\overline{\mathrm{FAULT}} \uparrow$ after fault condition is removed; $\mathrm{I}_{\mathrm{ACL}}=1 \mathrm{~A} ; \mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}$; $\mathrm{R}_{\mathrm{SET}}=91 \mathrm{k} \Omega$; switch out 20Ω load	--	180	--	$\mu \mathrm{s}$
$\overline{\text { FAULT }}_{\text {VOL }}$	$\overline{\text { FAULT Output Low Voltage }}$	$\mathrm{l}_{\text {FAULT }}=1 \mathrm{~mA}$	--	0.2	--	V
ON_V ${ }_{\text {IH }}$	ON Pin Input High Voltage		0.9	--	5	V
ON_V ${ }_{\text {IL }}$	ON Pin Input Low Voltage		-0.3	0	0.3	V
SEL_V $\mathrm{IH}_{\text {IH }}$	SEL pin Input High Voltage		1.65	--	4.5	V
SEL_V ${ }_{\text {IL }}$	SEL pin Input Low Voltage		-0.3	--	0.3	V
ION(Leakage)	ON Pin Leakage Current	$1 \mathrm{~V} \leq \mathrm{ON} \leq 5 \mathrm{~V}$ or $\mathrm{ON}=\mathrm{GND}$	--	--	1	$\mu \mathrm{A}$
THERM ${ }_{\text {ON }}$	Thermal Protection Shutdown Threshold		--	125	--	${ }^{\circ} \mathrm{C}$
THERM ${ }_{\text {OFF }}$	Thermal Protection Restart Threshold		--	100	--	${ }^{\circ} \mathrm{C}$
Notes: 1. Refer to typical Timing Parameter vs. $\mathrm{C}_{\text {SLEW }}$ performance charts for additional information.						

A $13.3 \mathrm{~m} \Omega$, 4 A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output
$\mathrm{T}_{\text {Total_ON }}, \mathrm{T}_{\text {ON_Delay }}$ and Slew Rate Measurement

*Rise and Fall Times of the ON Signal are 100 ns

A $13.3 \mathrm{~m} \Omega$, 4 A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output
Typical Performance Characteristics

A $13.3 \mathrm{~m} \Omega$, 4 A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output
$\mathrm{I}_{\mathrm{ACL}}$ vs Temperature and $\mathrm{R}_{\mathrm{SET}}$

$\mathrm{I}_{\mathrm{ACL}}$ vs $\mathrm{R}_{\mathrm{SET}}$ and V_{IN}

A $13.3 \mathrm{~m} \Omega$, 4 A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output
IOUT vs MOSFET IDS and $V_{\text {IN }}$

IOUT vs Temperature and MOSFET IDS

A $13.3 \mathrm{~m} \Omega$, 4 A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output
$\mathrm{V}_{\text {OUT }}$ Slew Rate vs Temperature, V_{IN}, and $\mathrm{C}_{\text {SLEW }}$

$\mathrm{T}_{\text {Total_ON }}$ vs $\mathrm{C}_{\text {SLEW }}, \mathrm{V}_{\text {IN }}$, and Temperature

A $13.3 \mathrm{~m} \Omega$, 4 A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output
Timing Diagram - Basic Operation including Active Current Limit Protection

A $13.3 \mathrm{~m} \Omega$, 4 A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$
 $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

Timing Diagram - Active Current Limit \& Thermal Protection Operation

Timing Diagram - Basic Operation including Active Current + Internal FET SOA Protection

A $13.3 \mathrm{~m} \mathrm{\Omega}$, 4 A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

SLG59H1008V Application Diagram

Figure 1. Test setup Application Diagram

Typical Turn-on Waveforms

Figure 2. Typical Turn ON operation waveform for $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{C}_{\mathrm{SLEW}}=10 \mathrm{nF}, \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F}, \mathrm{R}_{\text {LOAD }}=100 \Omega$

A $13.3 \mathrm{~m} \Omega, 4$ A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

Figure 3. Typical Turn ON operation waveform for $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{C}_{\mathrm{SLEW}}=18 \mathrm{nF}, \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F}, \mathrm{R}_{\text {LOAD }}=100 \Omega$

Figure 4. Typical Turn ON operation waveform for $\mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}, \mathrm{C}_{\mathrm{SLEW}}=10 \mathrm{nF}, \mathrm{C}_{\mathrm{LOAD}}=10 \mu \mathrm{~F}, \mathrm{R}_{\text {LOAD }}=100 \Omega$

A $13.3 \mathrm{~m} \Omega$, 4 A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

Figure 5. Typical Turn ON operation waveform for $\mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}, \mathrm{C}_{\mathrm{SLEW}}=18 \mathrm{nF}, \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F}, \mathrm{R}_{\text {LOAD }}=100 \Omega$ Typical Turn-off Waveforms

Figure 6. Typical Turn OFF operation waveform for $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{C}_{\mathrm{SLEW}}=10 \mathrm{nF}$, no $\mathrm{C}_{\text {LOAD }}, R_{\text {LOAD }}=100 \Omega$

A $13.3 \mathrm{~m} \Omega$, 4 A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

Figure 7. Typical Turn OFF operation waveform for $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{C}_{\mathrm{SLEW}}=10 \mathrm{nF}, \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F}, \mathrm{R}_{\text {LOAD }}=100 \Omega$

Figure 8. Typical Turn OFF operation waveform for $\mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}, \mathrm{C}_{\mathrm{SLEW}}=10 \mathrm{nF}$, no $\mathrm{C}_{\text {LOAD }}, R_{\text {LOAD }}=100 \Omega$

A $13.3 \mathrm{~m} \Omega$, 4 A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

Figure 9. Typical Turn OFF operation waveform for $\mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}, \mathrm{C}_{\mathrm{SLEW}}=10 \mathrm{nF}, \mathrm{C}_{\text {LOAD }}=10 \mu \mathrm{~F}, \mathrm{R}_{\text {LOAD }}=100 \Omega$ Typical ACL Operation Waveforms

Figure 10. Typical $A C L$ operation waveform for $\mathrm{V}_{\mathrm{IN}}=12 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}=10 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{ACL}}=1 \mathrm{~A}, \mathrm{R}_{\mathrm{SET}}=91 \mathrm{k} \Omega$

A $13.3 \mathrm{~m} \Omega$, 4 A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

Figure 11. Thermally induced SOA shutdown for $\mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}=10 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{ACL}}=1 \mathrm{~A}, \mathrm{R}_{\mathrm{SET}}=91 \mathrm{k} \Omega$ Typical $\overline{\text { FAULT Operation Waveforms }}$

Figure 12. Typical $\overline{\text { FAULT }}$ assertion waveform for $\mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}=10 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{ACL}}=1 \mathrm{~A}, \mathrm{R}_{\mathrm{SET}}=91 \mathrm{k} \Omega$, switch on 18.5Ω load

A $13.3 \mathrm{~m} \Omega$, 4 A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

Figure 13. Typical FAULT de-assertion waveform for $\mathrm{V}_{\mathrm{IN}}=24 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}=10 \mu \mathrm{~F}, \mathrm{I}_{\mathrm{ACL}}=1 \mathrm{~A}$, $R_{\text {SET }}=91 \mathrm{k} \Omega$, switch out 18.5Ω load

A $13.3 \mathrm{~m} \Omega$, 4 A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$ V_{IN} Lockout Select and MOSFET Current Monitor Output

Applications Information

HFET1 Safe Operating Area Explained

Dialog's HFET1 integrated power controllers incorporate a number of internal protection features that prevents them from damaging themselves or any other circuit or subcircuit downstream of them. One particular protection feature is their Safe Operation Area (SOA) protection. SOA protection is automatically activated under overpower and, in some cases, under overcurrent conditions. Overpower SOA is activated if package power dissipation exceeds an internal 5W threshold longer than 2.5 ms . HFET1 devices will quickly switch off (open circuit) upon overpower detection and automatically resume (close) nominal operation once overpower condition no longer exists.

One possible way to have an overpower condition trigger SOA protection is when HFET1 products are enabled into heavy output resistive loads and/or into large load capacitors. It is under these conditions to follow carefully the "Safe Start-up Loading" guidance in the Applications section of the datasheet. During an overcurrent condition, HFET1 devices will try to limit the output current to the level set by the external $\mathrm{R}_{\mathrm{SET}}$ resistor. Limiting the output current, however, causes an increased voltage drop across the FET's channel because the FET's RDS $_{\mathrm{ON}}$ increased as well. Since the FET's RDS ${ }_{O N}$ is larger, package power dissipation also increases. If the resultant increase in package power dissipation is higher/equal than 5 W for longer than 2.5 ms , internal SOA protection will be triggered and the FET will open circuit (switch off). Every time SOA protection is triggered, all HFET1 devices will automatically attempt to resume nominal operation after 160 ms .

Safe Start-up Condition

SLG59H1008V has built-in protection to prevent over-heating during start-up into a heavy load. Overloading the VOUT pin with a capacitor and a resistor may result in non-monotonic $\mathrm{V}_{\text {OUT }}$ ramping. In general, under light loading on VOUT, $\mathrm{V}_{\text {OUT }}$ ramping can be controlled with $\mathrm{C}_{\text {SLEW }}$ value. The following equation serves as a guide:

$$
\mathrm{C}_{\text {SLEW }}=\frac{\mathrm{T}_{\text {RISE }}}{\mathrm{V}_{\text {IN }}} \times 4.9 \mu \mathrm{~A} \times \frac{20}{3}
$$

where
$\mathrm{T}_{\text {RISE }}=$ Total rise time from $10 \% \mathrm{~V}_{\text {OUT }}$ to $90 \% \mathrm{~V}_{\text {OUT }}$
$\mathrm{V}_{\text {IN }}=$ Input Voltage
$\mathrm{C}_{\text {SLEW }}=$ Capacitor value for CAP pin
When capacitor and resistor loading on VOUT during start up, the following tables will ensure $\mathrm{V}_{\text {OUT }}$ ramping is monotonic without triggering internal protection:

Safe Start-up Loading for $\mathbf{V}_{\mathbf{I N}}=\mathbf{1 2} \mathbf{V}$ (Monotonic Ramp)				
Slew Rate (V/ms)	$\mathbf{C}_{\mathbf{S L E W}}(\mathbf{n F})^{\mathbf{2}}$	$\mathbf{C}_{\text {LOAD }}(\boldsymbol{\mu F})$	$\mathbf{R}_{\text {LOAD }}(\mathbf{\Omega})$	
1	33.3	500	20	
2	16.7	250	20	
3	11.1	160	20	
4	8.3	120	20	
5	6.7	100	20	

A $13.3 \mathrm{~m} \Omega, 4$ A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

Safe Start-up Loading for $\mathbf{V I N}_{\mathbf{I N}}=\mathbf{2 4} \mathbf{V}$ (Monotonic Ramp)			
Slew Rate (V/ms)	$\mathbf{C}_{\mathbf{S L E W}}(\mathbf{n F})^{\mathbf{2}}$	$\mathbf{C}_{\text {LOAD }}(\boldsymbol{\mu F})$	$\mathbf{R}_{\text {LOAD }}(\mathbf{\Omega})$
0.5	66.7	500	80
1.0	33.3	250	80
1.5	22.2	160	80
2.0	16.7	120	80
2.5	13.3	100	80

Note 2: Select the closest-value tolerance capacitor.

Setting the SLG59H1008V's Active Current Limit

$\mathbf{R}_{\mathbf{S E T}}(\mathbf{k} \mathbf{\Omega})$	Active Current Limit (A)
91	1
45	2
30	3
20	4.5

Note 3: Active Current Limit accuracy is $\pm 15 \%$ over voltage range and over temperature range.

Configuring the SLG59H1008V for $12 \mathrm{~V} \mathrm{~V}_{\text {IN }}$ Lockout Applications

To configure the SLG59H1008V for conditioned $12 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{IN}}$ applications is simply a matter of connecting the SEL pin to GND as shown in Figure A. For other V_{IN} lockout window applications, please consult Dialog for additional information.

Figure A .

A $13.3 \mathrm{~m} \Omega$, 4 A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$ $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

$24 \mathrm{~V}_{\mathrm{IN}}$ and 12 V $\mathrm{V}_{\text {IN }}$ Lockout Window Thresholds

Shown in Figure B and Figure C are the two sets of V_{IN} overvoltage/undervoltage lockout windows - one for conditioned $24 \mathrm{~V} \pm 5 \% \mathrm{~V}_{\text {IN }}$ systems and the second for conditioned $12 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\text {IN }}$ systems. To avoid lockout threshold collision with nominal operation, the SLG59H1008V's $\mathrm{V}_{\mathrm{IN}(\mathrm{OVLO})}$ min and $\mathrm{V}_{\mathrm{IN}(\mathrm{UVLO})}$ max thresholds were set 0.1 V correspondingly higher than the system's nominal V_{IN} max or lower than the system's V_{IN} min range.

Power Dissipation

The junction temperature of the SLG59H1008V depends on different factors such as board layout, ambient temperature, and other environmental factors. The primary contributor to the increase in the junction temperature of the $\mathrm{SLG59H} 1008 \mathrm{~V}$ is the power dissipation of its power MOSFET. Its power dissipation and the junction temperature in nominal operating mode can be calculated using the following equations:

$$
\mathrm{PD}=\mathrm{RDS}_{\mathrm{ON}} \times \mathrm{I}_{\mathrm{DS}}{ }^{2}
$$

where:
PD = Power dissipation, in Watts (W)
RDS $_{\text {ON }}=$ Power MOSFET ON resistance, in Ohms (Ω)
$\mathrm{I}_{\mathrm{DS}}=$ Output current, in Amps (A)
and

$$
\mathrm{T}_{\mathrm{J}}=\mathrm{PD} \times \theta_{\mathrm{JA}}+\mathrm{T}_{\mathrm{A}}
$$

where:
$\mathrm{T}_{\mathrm{J}}=$ Junction temperature, in Celsius degrees (${ }^{\circ} \mathrm{C}$)
$\theta_{\mathrm{JA}}=$ Package thermal resistance, in Celsius degrees per Watt (${ }^{\circ} \mathrm{C} / \mathrm{W}$)
$\mathrm{T}_{\mathrm{A}}=$ Ambient temperature, in Celsius degrees (${ }^{\circ} \mathrm{C}$)

A $13.3 \mathrm{~m} \Omega$, 4 A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

Power Dissipation (continued)

In current-limit mode, the SLG59H1008V's power dissipation can be calculated by taking into account the voltage drop across the power switch $\left(\mathrm{V}_{\mathrm{IN}^{-}}-\mathrm{V}_{\mathrm{OUT}}\right)$ and the magnitude of the output current in current-limit mode $\left(\mathrm{l}_{\mathrm{ACL}}\right)$:

$$
\begin{gathered}
\mathrm{PD}=\left(\mathrm{V}_{\mathrm{IN}^{-}} \mathrm{V}_{\mathrm{OUT}}\right) \times \mathrm{I}_{\mathrm{ACL}} \text { or } \\
\mathrm{PD}=\left(\mathrm{V}_{\mathrm{IN}}-\left(\mathrm{R}_{\mathrm{LOAD}} \times \mathrm{I}_{\mathrm{ACL}}\right)\right) \times \mathrm{I}_{\mathrm{ACL}}
\end{gathered}
$$

where:
PD = Power dissipation, in Watts (W)
$\mathrm{V}_{\text {IN }}=$ Input Voltage, in Volts (V)
$R_{\text {LOAD }}=$ Load Resistance, in Ohms (Ω)
$\mathrm{I}_{\mathrm{ACL}}=$ Output limited current, in Amps (A)
$\mathrm{V}_{\text {OUT }}=\mathrm{R}_{\text {LOAD }} \times \mathrm{I}_{\text {ACL }}$

A $13.3 \mathrm{~m} \Omega$, 4 A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$ $\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

Layout Guidelines:

1. Since the VIN and VOUT pins dissipate most of the heat generated during high-load current operation, it is highly recommended to make power traces as short, direct, and wide as possible. A good practice is to make power traces with absolute minimum widths of 15 mils $(0.381 \mathrm{~mm})$ per Ampere. A representative layout, shown in Figure 14, illustrates proper techniques for heat to transfer as efficiently as possible out of the device;
2. To minimize the effects of parasitic trace inductance on normal operation, it is recommended to connect input $\mathrm{C}_{\mathbb{I N}}$ and output C LOAD low-ESR capacitors as close as possible to the SLG59H1008V's VIN and VOUT pins;
3. The GND pin should be connected to system analog or power ground plane.
4. 2 oz . copper is recommended for high current operation.

SLG59H1008V Evaluation Board:

A HFET1 Evaluation Board for SLG59H1008V is designed according to the statements above and is illustrated on Figure 14. Please note that evaluation board has D_Sense and S_Sense pads. They cannot carry high currents and dedicated only for RDS $_{\mathrm{ON}}$ evaluation.

Figure 14. SLG59H1008V Evaluation Board

A $13.3 \mathrm{~m} \mathrm{\Omega}$, 4 A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output

Figure 15. SLG59H1008V Evaluation Board Connection Circuit

Basic Test Setup and Connections

Figure 16. SLG59H1008V Evaluation Board Connection Circuit

EVB Configuration

1. Set SELO to GND;
2. Based on V_{IN} voltage, set SEL1 to GND or 5 V to configure OVLO;
3. Connect oscilloscope probes to D/VIN, S/VOUT, ON, etc.;
4. Turn on Power Supply and set V_{IN} to 12 V or 24 V ;
5. Toggle the ON signal High or Low to observe SLG59H1008V operation.

1008V - Part ID Field
WW - Date Code Field ${ }^{1}$
NNN - Lot Traceability Code Field ${ }^{1}$
A - Assembly Site Code Field ${ }^{2}$
RR - Part Revision Code Field ${ }^{2}$

Note 1: Each character in code field can be alphanumeric A-Z and 0-9
Note 2: Character in code field can be alphabetic A-Z

A $13.3 \mathrm{~m} \Omega, 4$ A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output
Package Drawing and Dimensions
18 Lead TQFN Package $1.6 \times 3 \mathrm{~mm}$ (Fused Lead) JEDEC MO-220, Variation WCEE

Top View

Side View

Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
A	0.50	0.55	0.60	D	2.95	3.00	3.05
A1	0.005	-	0.05	E	1.55	1.60	1.65
A2	0.10	0.15	0.20	L	0.25	0.30	0.35
b	0.13	0.18	0.23	L1	0.64	0.69	0.74
e	0.40 BSC				L2	0.15	0.20
L3	2.34	2.39	2.44	L4	0.13	0.18	0.23

A $13.3 \mathrm{~m} \Omega, 4$ A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output
SLG59H1008V 18-pin STQFN PCB Landing Pattern

Exposed Pad
(PKG face down)

18

\square Recommended Land Pattern (PKG face down)

Note: All dimensions shown in micrometers ($\mu \mathrm{m}$)

A $13.3 \mathrm{~m} \Omega$, 4 A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output
Tape and Reel Specifications

Package Type	\# of Pins	$\begin{gathered} \text { Nominal } \\ \text { Package Size } \\ {[\mathrm{mm}]} \end{gathered}$	Max Units		Reel \& Hub Size [mm]	Leader (min)		Trailer (min)		Tape Width [mm]	Part Pitch [mm]
			per Reel	per Box		Pockets	Length [mm]	Pockets	Length [mm]		
$\begin{gathered} \text { STQFN } \\ 18 \mathrm{~L} \\ 1.6 \times 3 \mathrm{~mm} \\ 0.4 \mathrm{P} \mathrm{FC} \\ \text { Green } \end{gathered}$	18	$1.6 \times 3 \times 0.55$	3,000	3,000	178 / 60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions

| Package
 Type | PocketBTMPocketBTM
 Length
 Width | Pocket
 Depth | Index Hole
 Pitch | Pocket
 Pitch | Index Hole
 Diameter | Index Hole
 to Tape
 Edge | Index Hole
 to Pocket
 Center | Tape Width |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of $2.64 \mathrm{~mm}^{3}$ (nominal). More information can be found at www.jedec.org.

A $13.3 \mathrm{~m} \Omega$, 4 A Integrated Power Switch with $12 \mathrm{~V} / 24 \mathrm{~V}$
$\mathrm{V}_{\text {IN }}$ Lockout Select and MOSFET Current Monitor Output
Revision History

Date	Version	Change
$5 / 14 / 2020$	1.03	Updated Features Updated Evaluation Board figure
$12 / 12 / 2018$	1.02	Updated style and formatting Updated Charts Updated Scopeshots Added Layout Guidelines Fixed typos
$11 / 2 / 2017$	1.01	Updated $\mathrm{V}_{\text {IN }}$ Max and $\mathrm{V}_{\text {IN(OVLO) Min }}$ Fixed typos and formatting
$5 / 13 / 2016$	1.00	Production Release

