An Ultra-small $1.6 \mathrm{~mm}^{2}, 28.5 \mathrm{~m} \Omega, 1.0 \mathrm{~A}$, Integrated Power Switch

General Description

The SLG59M1558V is designed for load switching applications with ultra low quiescent current. The part comes with one $28.5 \mathrm{~m} \Omega$, 1.0 A rated P-channel MOSFET controlled by a single ON control pin. The product is packaged in an ultra-small $1.0 \mathrm{~mm} \times 1.0 \mathrm{~mm}$ package.

Features

- One 1.0 A MOSFET
- Ultra Low Quiescent Current
- Low RDS
- $28.5 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=5.0 \mathrm{~V}$
- $36.4 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$
- $44.3 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}$
- $60.8 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}$
- $77.6 \mathrm{~m} \Omega$ at $\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$
- $\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}$ to 5.5 V
- Pb-Free / Halogen-Free / RoHS compliant
- STDFN 4L, $1.0 \times 1.0 \times 0.55 \mathrm{~mm}$

Pin Configuration

4-pin STDFN
(Top View)

Block Diagram

An Ultra-small $1.6 \mathrm{~mm}^{2}, 28.5 \mathrm{~m} \Omega, 1.0 \mathrm{~A}$,
Integrated Power Switch
Pin Description

Pin \#	Pin Name	Type	Pin Description
1	ON	Input	A low-to-high transition on this pin initiates the operation of the SLG59M1558V. ON is an asserted HIGH, level-sensitive CMOS input with ON_V the ON pin input circuit does not have an internal pull-down resistor, con_V $V_{\text {IH }}>0.85 \mathrm{~V}$. As general-purpose output (GPO) of a microcontroller, an application processor, or a system controller - do not allow this pin to be open-circuited.
2	VIN	MOSFET	Input terminal connection of the power MOSFET. Connect a $10 \mu \mathrm{~F}$ (or larger) low-ESR capacitor from this pin to ground. Capacitors used at VIN should be rated at 10 V or higher.
3	VOUT	MOSFET	Output terminal connection of the power MOSFET. Capacitors used at VOUT should be rated at 10 V or higher.
4	GND	GND	Ground connection. Connect this pin to system analog or power ground plane.

Ordering Information

Part Number	Type	Production Flow
SLG59M1558V	STDFN 4L	Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
SLG59M1558VTR	STDFN 4L (Tape and Reel)	Industrial, $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$

An Ultra-small $1.6 \mathrm{~mm}^{2}, 28.5 \mathrm{~m} \Omega, 1.0 \mathrm{~A}$, Integrated Power Switch

Absolute Maximum Ratings

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IN }}$	Power Switch Input Voltage		--	--	6	V
T_{S}	Storage Temperature		-65	--	140	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature		-40	--	150	${ }^{\circ} \mathrm{C}$
ESD ${ }_{\text {HBM }}$	ESD Protection	Human Body Model	2000	--	--	V
$\theta_{\text {JA }}$	Thermal Resistance	$1.0 \times 1.0 \mathrm{~mm}, 4 \mathrm{~L}$ STDFN; Determined using $1 \mathrm{in}^{2}, 2$ oz. copper pads under each VIN and VOUT terminals and FR4 pcb material	--	122	--	${ }^{\circ} \mathrm{C} / \mathrm{W}$
$\mathrm{W}_{\text {DIS }}$	Package Power Dissipation		--	--	0.5	W
MOSFET IDS ${ }_{\text {PEAK }}$	Peak Current from VIN to VOUT	For no more than 1 ms with 1% duty cycle	--	--	1.5	A

Note: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

Electrical Characteristics

$T_{A}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{V}_{\text {IN }}$	Power Switch Input Voltage	$-40^{\circ} \mathrm{C}$ to $85{ }^{\circ} \mathrm{C}$	1.5	--	5.5	V
1 N	Power Switch Input Current (PIN 2)	when OFF, $\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$, No load	--	0.02	1	$\mu \mathrm{A}$
		when ON, ON = $\mathrm{V}_{\text {IN }}$, No load	--	0.05	0.5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {FET_OFF }}$	MOSFET OFF Leakage Current	$\mathrm{ON}=\mathrm{LOW} ; \mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$	--	0.05	1	$\mu \mathrm{A}$
lon_LKG	ON Pin Input Leakage		--	--	0.1	$\mu \mathrm{A}$
$\mathrm{RDS}_{\text {ON }}$	ON Resistance, $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=100 \mathrm{~mA}$	--	28.5	32.0	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=100 \mathrm{~mA}$	--	36.4	40.0	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=100 \mathrm{~mA}$	--	44.3	49.0	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=100 \mathrm{~mA}$	--	60.8	65.0	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=100 \mathrm{~mA}$	--	77.6	82.0	$\mathrm{m} \Omega$
$\mathrm{RDS}_{\text {ON }}$	ON Resistance, $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=100 \mathrm{~mA}$	--	34.0	36.0	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=100 \mathrm{~mA}$	--	43.8	46.0	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{IN}}=2.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=100 \mathrm{~mA}$	--	53.3	56.0	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{IN}}=1.8 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=100 \mathrm{~mA}$	--	72.2	76.0	$\mathrm{m} \Omega$
		$\mathrm{V}_{\mathrm{IN}}=1.5 \mathrm{~V}, \mathrm{I}_{\mathrm{DS}}=100 \mathrm{~mA}$	--	90.7	94.0	$\mathrm{m} \Omega$
MOSFET IDS	Current from VIN to VOUT	Continuous	--	--	1.0	A
Ton_Delay	ON Delay Time	50% ON to $\mathrm{V}_{\text {OUT }}$ Ramp Start; $\mathrm{V}_{I N}=5 \mathrm{~V}, C_{\text {LOAD }}=0.1 \mu \mathrm{~F} \text {, }$ $R_{\text {LOAD }}=10 \Omega$	10	15	27	$\mu \mathrm{S}$
		50% ON to $\mathrm{V}_{\text {OUT }}$ Ramp Start; $\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F}$, $R_{\text {LOAD }}=10 \Omega$	17	31	40	$\mu \mathrm{s}$
		50% ON to $\mathrm{V}_{\text {OuT }}$ Ramp Start; $\mathrm{V}_{I N}=1.5 \mathrm{~V}, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F} \text {, }$ $R_{\text {LOAD }}=10 \Omega$	44	69	96	$\mu \mathrm{s}$

An Ultra-small $1.6 \mathrm{~mm}^{2}, 28.5 \mathrm{~m} \Omega, 1.0 \mathrm{~A}$,
Integrated Power Switch

Electrical Characteristics (continued)

$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	Description	Conditions	Min.	Typ.	Max.	Unit
$\mathrm{T}_{\text {Total_ON }}$	Total Turn ON Time	$\begin{aligned} & 50 \% \text { ON to } 90 \% \mathrm{~V}_{\text {OUT }} ; \\ & \mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F}, \\ & \mathrm{R}_{\text {LOAD }}=10 \Omega \end{aligned}$	114	122	134	$\mu \mathrm{s}$
		$\begin{aligned} & 50 \% \text { ON to } 90 \% \mathrm{~V}_{\text {OUT }} ; \\ & \mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F}, \\ & \mathrm{R}_{\text {LOAD }}=10 \Omega \end{aligned}$	146	156	176	$\mu \mathrm{s}$
		$\begin{aligned} & 50 \% \text { ON to } 90 \% \mathrm{~V}_{\text {OUT }} ; \\ & \mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}=0.1 \mu \mathrm{~F}, \\ & \mathrm{R}_{\text {LOAD }}=10 \Omega \end{aligned}$	292	332	399	$\mu \mathrm{s}$
T Vout(R)	$\mathrm{V}_{\text {Out }}$ Rise Time	$\begin{aligned} & 10 \% \mathrm{~V}_{\text {OUT }} \text { to } 90 \% \mathrm{~V}_{\text {OUT }} ; \\ & \mathrm{V}_{\text {IN }}=5.0 \mathrm{~V}, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F}, \\ & \mathrm{R}_{\text {LOAD }}=10 \Omega \end{aligned}$	92	97	107	$\mu \mathrm{s}$
		$\begin{aligned} & 10 \% \mathrm{~V}_{\mathrm{OUT}} \text { to } 90 \% \mathrm{~V}_{\mathrm{OUT}} ; \\ & \mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{C}_{\mathrm{LOAD}}=0.1 \mu \mathrm{~F}, \\ & \mathrm{R}_{\mathrm{LOAD}}=10 \Omega \end{aligned}$	116	120	131	$\mu \mathrm{s}$
		$\begin{aligned} & 10 \% \mathrm{~V}_{\text {OUT }} \text { to } 90 \% \mathrm{~V}_{\text {OUT }} ; \\ & \mathrm{V}_{\text {IN }}=1.5 \mathrm{~V}, \mathrm{C}_{\text {LOAD }}=0.1 \mu \mathrm{~F}, \\ & \mathrm{R}_{\text {LOAD }}=10 \Omega \end{aligned}$	228	253	296	$\mu \mathrm{s}$
$\mathrm{ON}, \mathrm{V}_{\mathrm{IH}}$	High Input Voltage on ON pin		0.85	--	$\mathrm{V}_{\text {IN }}$	V
ON_V ${ }_{\text {IL }}$	Low Input Voltage on ON pin		-0.3	0	0.3	V
ToFF_Delay	OFF Delay Time	50% ON to $\mathrm{V}_{\text {OUT }}$ Fall Start, $\mathrm{V}_{\text {IN }}=5 \mathrm{~V}$, $R_{\text {LOAD }}=10 \Omega$, no $C_{\text {LOAD }}$	6.2	6.5	7.0	$\mu \mathrm{s}$

An Ultra-small $1.6 \mathrm{~mm}^{2}, 28.5 \mathrm{~m} \Omega, 1.0 \mathrm{~A}$,
Integrated Power Switch
V_{IN} vs. Max I_{DS}, Safe Operation Area

T Total_ON,$T_{\text {ON_Delay }}$ and Rise Time Measurement

*Rise and Fall Times of the ON Signal are 100 ns

An Ultra-small $1.6 \mathrm{~mm}^{2}, 28.5 \mathrm{~m} \Omega, 1.0 \mathrm{~A}$, Integrated Power Switch

SLG59M1558V Power-Up/Power-Down Sequence Considerations

A nominal power-up sequence is to apply $\mathrm{V}_{I N}$ and toggle the ON pin LOW-to-HIGH after $\mathrm{V}_{\mathbb{I N}}$ is at least 90% of its final value. A nominal power-down sequence is the power-up sequence in reverse order. If V_{IN} ramp is too fast, a voltage glitch may appear on the output pin at VOUT. To prevent glitches at the output, it is recommended to connect at least 0.1 uF capacitor from the VOUT pin to GND and to keep the V_{IN} ramp time higher than 2 ms .

Power Dissipation Considerations

The junction temperature of the SLG59M1558V depends on factors such as board layout, ambient temperature, external air flow over the package, load current, and the $\mathrm{RDS}_{\mathrm{ON}}$ generated voltage drop across each power MOSFET. While the primary contributor to the increase in the junction temperature of the SLG59M1558V is the power dissipation of its power MOSFETs, its power dissipation and the junction temperature in nominal operating mode can be calculated using the following equations:

$$
\mathrm{PD}_{\mathrm{TOTAL}}=\mathrm{RDS}_{\mathrm{ON}} \times \mathrm{I}_{\mathrm{DS}}{ }^{2}
$$

where:
$\mathrm{PD}_{\text {TOTAL }}=$ Total package power dissipation, in Watts (W)
$\mathrm{RDS}_{\mathrm{ON}}=$ Power MOSFET ON resistance, in Ohms (Ω)
$\mathrm{I}_{\mathrm{DS}}=$ Output current, in Amps (A)
and

$$
\mathrm{T}_{J}=\mathrm{PD}_{\text {TOTAL }} \times \theta_{J A}+\mathrm{T}_{\mathrm{A}}
$$

where:
$\mathrm{T}_{\mathrm{J}}=$ Die junction temperature, in Celsius degrees (${ }^{\circ} \mathrm{C}$)
$\theta_{\mathrm{JA}}=$ Package thermal resistance, in Celsius degrees per Watt (${ }^{\circ} \mathrm{C} / \mathrm{W}$) - highly dependent on pcb layout
$\mathrm{T}_{\mathrm{A}}=$ Ambient temperature, in Celsius degrees (${ }^{\circ} \mathrm{C}$)
In nominal operating mode, the SLG59M1558V's power dissipation can also be calculated by taking into account the voltage drop across the switch $\left(\mathrm{V}_{\mathrm{IN}}-\mathrm{V}_{\mathrm{OUT}}\right)$ and the magnitude of the switch's output current (l_{DS}):

$$
\begin{gathered}
\mathrm{PD}_{\text {TOTAL }}=\left(\mathrm{V}_{\text {IN }}-\mathrm{V}_{\text {OUT }}\right) \times \mathrm{I}_{\mathrm{DS}} \text { or } \\
\mathrm{PD}_{\text {TOTAL }}=\left(\mathrm{V}_{\text {IN }}-\left(\mathrm{R}_{\text {LOAD }} \times \mathrm{I}_{\mathrm{DS}}\right)\right) \times \mathrm{I}_{\mathrm{DS}}
\end{gathered}
$$

where:
$\mathrm{PD}_{\text {TOTAL }}=$ Total package power dissipation, in Watts (W)
$\mathrm{V}_{\text {IN }}=$ Switch input Voltage, in Volts (V)
$\mathrm{R}_{\text {LOAD }}=$ Output Load Resistance, in Ohms (Ω)
$\mathrm{I}_{\mathrm{DS}}=$ Switch output current, in Amps (A)
$\mathrm{V}_{\text {OUT }}=$ Switch output voltage, or $\mathrm{R}_{\text {LOAD }} \times \mathrm{I}_{\text {DS }}$

An Ultra-small $1.6 \mathrm{~mm}^{2}, 28.5 \mathrm{~m} \Omega, 1.0 \mathrm{~A}$, Integrated Power Switch

SLG59M1558V Layout Suggestion

Note: All dimensions shown in micrometers ($\mu \mathrm{m}$)

An Ultra-small $1.6 \mathrm{~mm}^{2}, 28.5 \mathrm{~m} \Omega, 1.0 \mathrm{~A}$, Integrated Power Switch

Layout Guidelines:

1. Since the VIN and VOUT pins dissipate most of the heat generated during high-load current operation, it is highly recommended to make power traces as short, direct, and wide as possible. A good practice is to make power traces with an absolute minimum widths of 15 mils (0.381 mm) per Ampere. A representative layout, shown in Figure 1, illustrates proper techniques for heat to transfer as efficiently as possible out of the device;
2. To minimize the effects of parasitic trace inductance on normal operation, it is recommended to connect input $\mathrm{C}_{\mathbb{I N}}$ and output C LOAD low-ESR capacitors as close as possible to the SLG59M1558V's VIN and VOUT pins;
3. The GND pin should be connected to system analog or power ground plane.
4. 2 oz . copper is recommended for high current operation.

SLG59M1558V Evaluation Board:

A GFET3 Evaluation Board for SLG59M1558V is designed according to the statements above and is illustrated on Figure 1. Please note that evaluation board has D_Sense and S_Sense pads. They cannot carry high currents and dedicated only for RDS $_{\mathrm{ON}}$ evaluation.

Please solder your SLG59M1558V here

Figure 1. SLG59M1558V Evaluation Board

An Ultra-small $1.6 \mathrm{~mm}^{2}, 28.5 \mathrm{~m} \Omega, 1.0 \mathrm{~A}$,
Integrated Power Switch

Figure 2. SLG59M1558V Evaluation Board Connection Circuit

An Ultra-small $1.6 \mathrm{~mm}^{2}, 28.5 \mathrm{~m} \Omega, 1.0 \mathrm{~A}$, Integrated Power Switch

Basic Test Setup and Connections

Figure 3. SLG59M1558V Evaluation Board Connection Circuit

EVB Configuration

1. Connect oscilloscope probes to D/VIN, S/VOUT, ON, etc.;
2. Turn on Power Supply 1 and set desired V_{IN} from 1.5 V ... 5.5 V range;
3. Toggle the ON signal High or Low to observe SLG59M1558V operation.

An Ultra-small $1.6 \mathrm{~mm}^{2}, 28.5 \mathrm{~m} \Omega, 1.0 \mathrm{~A}$, Integrated Power Switch

Package Top Marking System Definition

NN - Part Serial Number Field Line 1
where each "N" character can be A-Z and 0-9

+ - Part Serial Number Field Line 2
where " + " character can be,,$+-=$, or blank

An Ultra-small $1.6 \mathrm{~mm}^{2}, 28.5 \mathrm{~m} \Omega, 1.0 \mathrm{~A}$,
Integrated Power Switch
Package Drawing and Dimensions
4 Lead STDFN Package $1.0 \times 1.0 \mathrm{~mm}$

Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
A	0.50	0.55	0.60	D	0.95	1.00	1.05
A1	0.005	-	0.060	E	0.95	1.00	1.05
A2	0.10	0.15	0.20	L	0.35	0.40	0.45
b	0.15	0.20	0.25	S	0.2 REF		
e	0.40 BSC						

An Ultra-small $1.6 \mathrm{~mm}^{2}, 28.5 \mathrm{~m} \Omega, 1.0 \mathrm{~A}$, Integrated Power Switch

Tape and Reel Specifications

Package Type	\# of Pins	Nominal Package Size [mm]	Max Units		 Hub Size [mm]	Leader (min)		Trailer (min)		Tape Width [mm]	Part Pitch [mm]
			per Reel	per Box		Pockets	Length [mm]	Pockets	Length [mm]		
STDFN 4L Green	4	$1.0 \times 1.0 \times 0.55$	8000	8000	178 / 60	200	400	200	400	8	2

Carrier Tape Drawing and Dimensions

Package Type	PocketBTM Length	$\begin{aligned} & \text { Pocket BTM } \\ & \text { Width } \end{aligned}$	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Center	Tape Width
	A0	B0	K0	P0	P1	D0	E	F	W
STDFN 4L Green	1.16	1.16	0.63	4	2	1.5	1.75	3.5	8

Refer to EIA-481 specification

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of $0.55 \mathrm{~mm}^{3}$ (nominal). More information can be found at www.jedec.org.

An Ultra-small $1.6 \mathrm{~mm}^{2}, 28.5 \mathrm{~m} \Omega, 1.0 \mathrm{~A}$,
Integrated Power Switch

Revision History

Date	Version	Change
$6 / 10 / 2020$	1.05	Updated Style and formatting Added Power Dissipation Considerations Added Layout Guidelines Fixed typos
$11 / 14 / 2017$	1.04	Updated Package Marking Definition
$11 / 30 / 2016$	1.03	Fixed Parameter name from VDD to VIN in Abs. Max Table
$6 / 22 / 2016$	1.02	Added section on Power Up/Down Sequence Considerations Removed IDS_Ikg parameter (same as IDD when OFF) Updated Recommended Layout suggestion
$9 / 11 / 2015$	1.01	Updated IDD and Tdelay_ON

