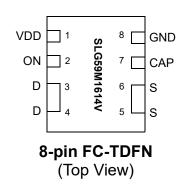


An Ultra-small 3 mm², 8.5 m Ω , 4 Å, Internally-protected Integrated Power Switch

General Description

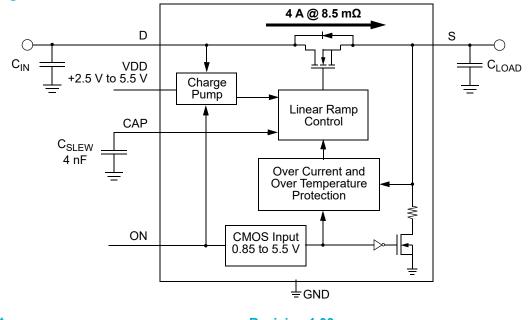
The SLG59M1614V is a high performance 8.5 m Ω , 4 A single-channel nFET integrated power switch which can operate with a 2.5 V to 5.5 V V_{DD} supply to switch power rails from as low as 0.85 V up to the supply voltage. The SLG59M1614V incorporates two-level overload current protection, thermal shutdown protection, and inrush current control which can easily be adjusted by a small external capacitor.

Using a proprietary MOSFET design, the SLG59M1614V achieves a stable 8.5 m Ω RDS_{ON} across a wide input voltage range. In addition, the SLG59M1614V's package also exhibits low thermal resistance for high-current operation using Dialog's advanced assembly technology.


Fully specified over the -40 $^{\circ}$ C to 85 $^{\circ}$ C temperature range, the SLG59M1614V is packaged in a space-efficient, low thermal resistance, RoHS-compliant 1.5 mm x 2.0 mm STDFN package.

Features

- 1.5 x 2.0 mm FC-TDFN 8L package (2 fused pins for drain and 2 fused pins for source)
- Logic level ON pin capable of supporting 0.85 V CMOS Logic
- · User selectable ramp rate with external capacitor
- 8.5 mΩ RDS_{ON} while supporting 4 A
- Discharges load when off
- Two Over Current Protection Modes
- Short Circuit Current Limit
- Active Current Limit
- Over Temperature Protection
- Pb-Free / Halogen-Free / RoHS compliant
- Operating Temperature: -40 °C to 85 °C
- Operating Voltage: 2.5 V to 5.5 V


Block Diagram

Pin Configuration

Applications

- Notebook Power Rail Switching
- · Tablet Power Rail Switching
- Smartphone Power Rail Switching

CFR0011-120-01

13-Sep-2018

Pin Description

Pin #	Pin Name	Туре	Pin Description
1	VDD	PWR	VDD supplies the power for the operation of the power switch and internal control circuitry. Bypass the VDD pin to GND with a 0.1 μF (or larger) capacitor.
2	ON	Input	A low-to-high transition on this pin initiates the operation of the SLG59M1614V's state machine. ON is a CMOS input with ON_V _{IL} < 0.3 V and ON_V _{IH} > 0.85 V thresholds. While there is an internal pull-down circuit to GND (~4 M Ω), connect this pin directly to a general-purpose output (GPO) of a microcontroller, an application processor, or a system controller.
3, 4	D	MOSFET	Drain terminal connection of the n-channel MOSFET (2 pins fused for V _D). Connect at least a low-ESR 0.1 μ F capacitor from this pin to ground. Capacitors used at V _D should be rated at 10 V or higher.
5, 6	S	MOSFET	Source terminal connection of the n-channel MOSFET (2 pins fused for V _S). Connect a low-ESR capacitor from this pin to ground and consult the Electrical Characteristics table for recommended C_{LOAD} range. Capacitors used at V _S should be rated at 10 V or higher.
7	CAP	Input	A low-ESR, stable dielectric, ceramic surface-mount capacitor connected from CAP pin to GND sets the V _S slew rate and overall turn-on time of the SLG59M1614V. For best performance C_{SLEW} value should be \geq 1.5 nF and voltage level should be rated at 10 V or higher.
8	GND	GND	Ground connection. Connect this pin to system analog or power ground plane.

Ordering Information

Part Number	Туре	Production Flow			
SLG59M1614V	FC-TDFN 8L	Industrial, -40 °C to 85 °C			
SLG59M1614VTR	FC-TDFN 8L (Tape and Reel)	Industrial, -40 °C to 85 °C			

An Ultra-small 3 mm², 8.5 m Ω , 4 A, Internally-protected Integrated Power Switch

Absolute Maximum Ratings

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
V _{DD}	Power Supply				7	V
V _D to GND	Power Switch Input Voltage to GND		-0.3		V _{DD}	V
V _S to GND	Power Switch Output Voltage to GND		-0.3		VD	V
ON and CAP to GND	ON and CAP Pin Voltages to GND		-0.3		V _{DD}	V
T _S	Storage Temperature		-65		150	°C
ESD _{HBM}	ESD Protection	Human Body Model	2000			V
ESD _{CDM}	ESD Protection	Charged Device Model	1000			V
MSL	Moisture Sensitivity Level				1	
θ _{JA}	Thermal Resistance	1.5 x 2mm, 8L TDFN; Determined using 1 in ² , 1 oz. copper pads under each VD and VS terminals and FR4 pcb material		85		°C/W
W _{DIS}	Package Power Dissipation				1	W
MOSFET IDS _{PK}	Peak Current from Drain to Source	For no more than 1 ms with 1% duty cycle			6	А
only and fu	nctional operation of the device at thes	Aximum Ratings" may cause permanent damag se or any other conditions above those indicate aximum rating conditions for extended periods r	ed in the	operation	al sectior	

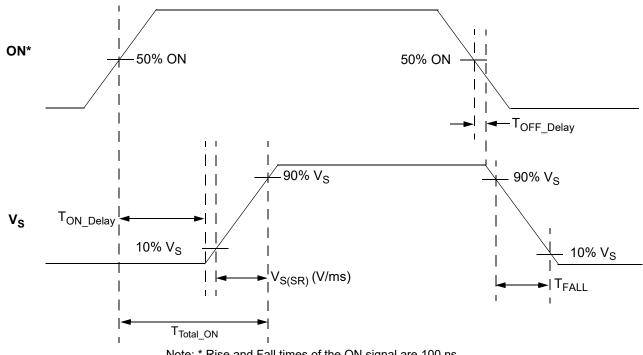
Electrical Characteristics

 T_A = -40 °C to 85 °C unless otherwise noted.

Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
V _{DD}	Power Supply Voltage	-40 °C to 85 °C	2.5		5.5	V
I	Power Supply Current (PIN 1)	when OFF			1	μA
I _{DD}		when ON, No load		70	105	μA
PDS	ON Resistance	T _A 25°C, I _{DS} = 100 mA		8.5	10.3	mΩ
RDS _{ON}	ON Resistance	T _A 85°C, I _{DS} = 100 mA		10	12	mΩ
MOSFET IDS	Current from VD to VS	Continuous			4	А
VD	Drain Voltage		0.85		V_{DD}	V
I _{FET_OFF}	MOSFET OFF Leakage Current	$2.5 V \le V_{DD} \le 5.5 V;$ V _S = 0 V; ON = LOW; T _A = 25°C			1	μA
T _{ON_Delay}	ON Delay Time	50% ON to V _S Ramp Start		300	500	μs
		50% ON to 90% V _S	Set by External C _{SLEW}		C _{SLEW} ¹	ms
T _{Total_ON}	Total Turn On Time	Example: C_{SLEW} = 4 nF, V_{DD} = V_D = 5 V, C_{LOAD} = 10 µF, R_{LOAD} = 20 Ω		1.8		ms
		10% V_S to 90% V_S	Set by	Set by External		V/ms
V _{S(SR)}	Slew Rate	Example: C_{SLEW} = 4 nF, V_{DD} = V_D = 5 V, C_{LOAD} = 10 µF, R_{LOAD} = 20 Ω		3.0		V/ms
C _{LOAD}	Output Load Capacitance	C _{LOAD} connected from VS to GND		10	500	μF
R _{DISCHRGE}	Discharge Resistance		100	200	300	Ω

Datasheet

13-Sep-2018

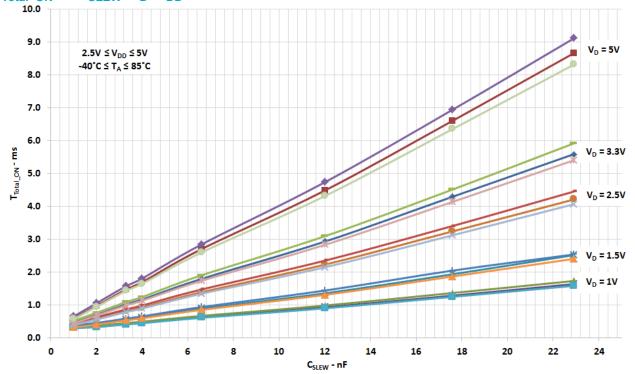

Electrical Characteristics (continued)

 T_A = -40 °C to 85 °C unless otherwise noted.

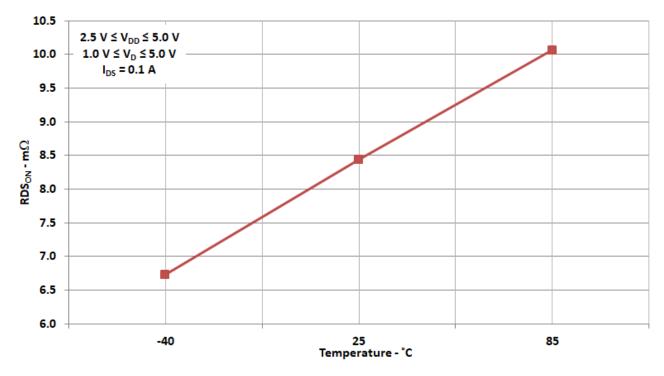
Parameter	Description	Conditions	Min.	Тур.	Max.	Unit
ON_V _{IH}	High Input Voltage on ON pin		0.85		V _{DD}	V
ON_V_{IL}	Low Input Voltage on ON pin		-0.3	0	0.3	V
I _{LIMIT}	Active Current Limit, I _{ACL}	MOSFET will automatically limit current when V _S > 250 mV		6.0		A
	Short Circuit Current Limit, I _{SCL}	MOSFET will automatically limit current when V_S < 250 mV		0.5		A
THERMON	Thermal shutoff turn-on temperature			125		°C
THERMOFF	Thermal shutoff turn-off temperature			100		°C
THERM _{TIME}	Thermal shutoff time				1	ms
T _{OFF_Delay}	OFF Delay Time	50% ON to V _S Fall Start, V _{DD} = V _D = 5 V, R _{LOAD} = 20 Ω, no C _{LOAD}			32	μs
Notes:	•					

1. Refer to typical timing parameter vs. C_{SLEW} performance charts for additional information when available.

T_{ON Delay}, V_{S(SR)}, and T_{Total ON} Timing Details


Note: * Rise and Fall times of the ON signal are 100 ns

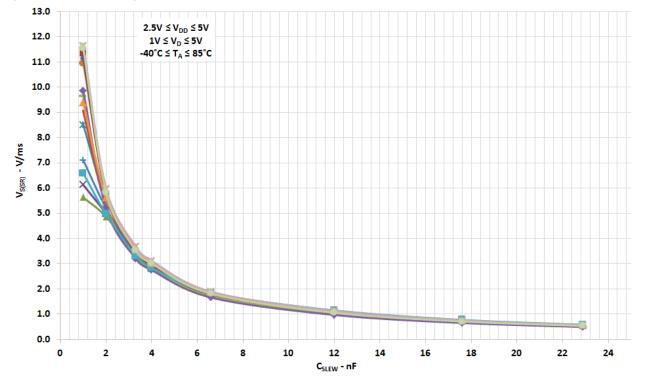
Datas	heet	
Datas	neel	


An Ultra-small 3 mm², 8.5 m Ω , 4 A, Internally-protected Integrated Power Switch

Typical Performance Characteristics

T_{Total ON} vs C_{SLEW}, V_D, V_{DD}, and Temperature

RDS_{ON} vs. Temperature, V_{DD}, and V_{IN}



Datasheet	Revision 1.03	13-Sep-2018
CFR0011-120-01	Page 5 of 15	© 2018 Dialog Semiconductor

An Ultra-small 3 mm², 8.5 m Ω , 4 A, Internally-protected Integrated Power Switch

V_{S} Slew Rate vs. $C_{SLEW},\,V_{DD},\,and$ Temperature

SLG59M1614V Power-Up/Power-Down Sequence Considerations

To ensure glitch-free power-up under all conditions, apply V_{DD} first, followed by V_D after V_{DD} exceeds 1 V. Then allow V_D to reach 90% of its max value before toggling the ON pin from Low-to-High. Likewise, power-down in reverse order.

If V_{DD} and V_D need to be powered up simultaneously, glitching can be minimized by having a suitable load capacitor. A 10 μ F C_{LOAD} will prevent glitches for rise times of V_{DD} and V_D less than 2 ms.

If the ON pin is toggled HIGH before V_{DD} and V_D have reached their steady-state values, the IPS timing parameters may differ from datasheet specifications.

The slew rate of output V_S follows a linear ramp set by a capacitor connected to the CAP pin. A larger capacitor value at the CAP pin produces a slower ramp, reducing inrush current from capacitive loads.

SLG59M1614V Current Limiting Operation

The SLG59M1614V has two types of current limiting triggered by the output V_S pin voltage.

1. Standard Current Limiting Mode (with Thermal Shutdown Protection)

When the V_S pin voltage > 250 mV, the output current is initially limited to the Active Current Limit (I_{ACL}) specification listed in the Electrical Characteristics table. The ACL monitor's response time is very fast and is triggered within a few microseconds to sudden (transient) changes in load current. When a load current overload is detected, the ACL monitor increases the FET resistance to keep the current from exceeding the power switch's I_{ACL} threshold.

However, if a load-current overload condition persists where the die temperature rises because of the increased FET resistance, the power switch's internal Thermal Shutdown Protection circuit can be activated. If the die temperature exceeds the listed THERM_{ON} specification, the FET is shut OFF completely, thereby allowing the die to cool. When the die cools to the listed THERM_{OFF} temperature threshold, the FET is allowed to turn back on. This process may repeat as long as the output current overload condition persists.

2. Short Circuit Current Limiting Mode (with Thermal Shutdown Protection)

When the V_S pin voltage < 250 mV (which is the case with a hard short, such as a solder bridge on the power rail), the power switch's internal Short-circuit Current Limit (SCL) monitor limits the FET current to approximately 500 mA (the I_{SCL} threshold). While the internal Thermal Shutdown Protection circuit remains enabled and since the I_{SCL} threshold is much lower than the I_{ACL} threshold, thermal shutdown protection may become activated only at higher ambient temperatures.

	_
Datas	heet
acuo	

An Ultra-small 3 mm², 8.5 mΩ, 4 A, Internally-protected Integrated Power Switch

Power Dissipation

The junction temperature of the SLG59M1614V depends on different factors such as board layout, ambient temperature, and other environmental factors. The primary contributor to the increase in the junction temperature of the SLG59M1614V is the power dissipation of its power MOSFET. Its power dissipation and the junction temperature in nominal operating mode can be calculated using the following equations:

$$PD = RDS_{ON} \times I_{DS}^2$$

where: PD = Power dissipation, in Watts (W) RDS_{ON} = Power MOSFET ON resistance, in Ohms (Ω) I_{DS} = Output current, in Amps (A)

and

 $T_{,I} = PD \times \Theta_{,IA} + T_A$

where:

 T_{J} = Junction temperature, in Celsius degrees (°C) Θ_{JA} = Package thermal resistance, in Celsius degrees per Watt (°C/W) T_A = Ambient temperature, in Celsius degrees (°C)

During active current-limit operation, the SLG59M1614V's power dissipation can be calculated by taking into account the voltage drop across the power switch (V_D - V_S) and the magnitude of the output current in active current-limit operation (I_{ACL}):

> $PD = (V_D - V_S) \times I_{ACL}$ or $PD = (V_D - (R_{LOAD} \times I_{ACL})) \times I_{ACL}$

where:

PD = Power dissipation, in Watts (W) V_D = Input Voltage, in Volts (V) R_{LOAD} = Load Resistance, in Ohms (Ω) I_{ACL} = Output limited current, in Amps (A) V_S = R_{LOAD} x I_{ACL}

For more information on Dialog GreenFET3 integrated power switch features, please visit our Documents search page at our website and see App Note "AN-1068 GreenFET3 Integrated Power Switch Basics".

13-Sep-2018

Layout Guidelines:

- 1. The VDD pin needs a 0.1 µF and 10 µF external capacitors to smooth pulses from the power supply. Locate this capacitor as close as possible to the SLG59M1614V's PIN1.
- 2.Since the D/VIN and S/VOUT pins dissipate most of the heat generated during high-load current operation, it is highly recommended to make power traces as short, direct, and wide as possible. A good practice is to make power traces with an absolute minimum widths of 15 mils (0.381 mm) per Ampere. A representative layout, shown in Figure 1, illustrates proper techniques for heat to transfer as efficiently as possible out of the device;
- 3.To minimize the effects of parasitic trace inductance on normal operation, it is recommended to connect input C_{IN} and output C_{LOAD} low-ESR capacitors as close as possible to the SLG59M1614V's D/VIN and S/VOUT pins;
- 4. The GND pin should be connected to system analog or power ground plane.

SLG59M1614V Evaluation Board:

A GFET3 Evaluation Board for SLG59M1614V is designed according to the statements above and is illustrated on Figure 1. Please note that evaluation board has D_Sense and S_Sense pads. They cannot carry high currents and dedicated only for RDS_{ON} evaluation.

Please solder your SLG59M1614V here

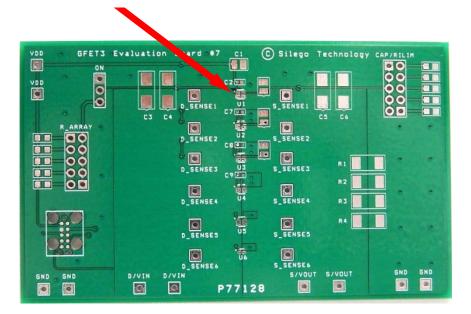


Figure 1. SLG59M1614V Evaluation Board.

An Ultra-small 3 mm², 8.5 m Ω , 4 A, Internally-protected Integrated Power Switch

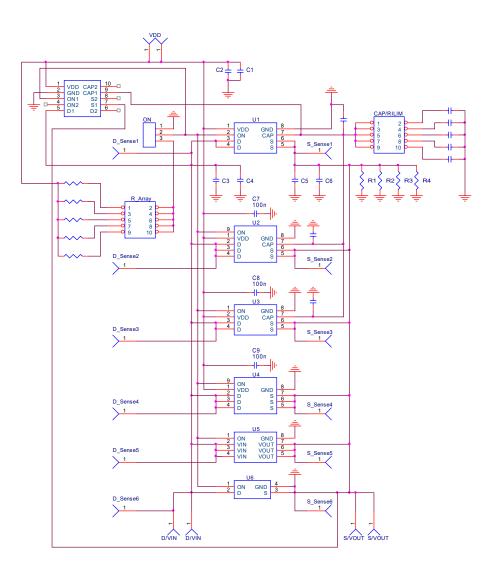
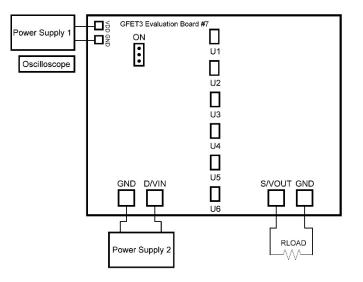
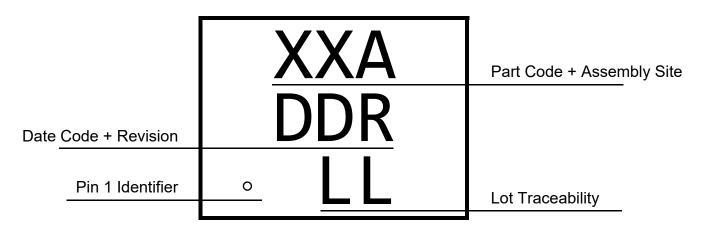


Figure 2. SLG59M1614V Evaluation Board Connection Circuit.

n	-	4-	-	L.	-	et	
	-			F 1	е	ег	
_	-		-		-		

Basic Test Setup and Connections



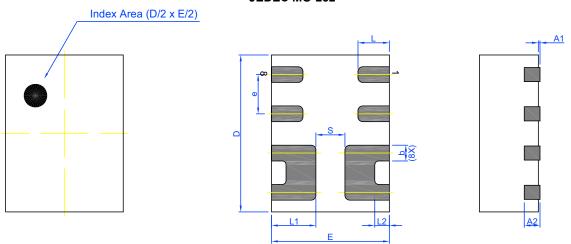

Figure 3. Typical connections for GFET3 Evaluation.

EVB Configuration

- 1. Connect oscilloscope probes to D/VIN, S/VOUT, ON, etc.;
- 2.Turn on Power Supply 1 and set desired VDD from 2.5 V...5.5 V range;
- 3.Turn on Power Supply 2 and set desired VD from 0.85 V...5.5 V range;
- 4.Toggle the ON signal High or Low to observe SLG59M1614V operation.

Package Top Marking System Definition

XX - Part Code Field¹ A - Assembly Site Code Field² DD - Date Code Field¹ R - Part Revision Code Field² LL - Lot Traceability Field¹


Note 1: Each character in code field can be alphanumeric A-Z and 0-9 Note 2: Character in code field can be alphabetic A-Z

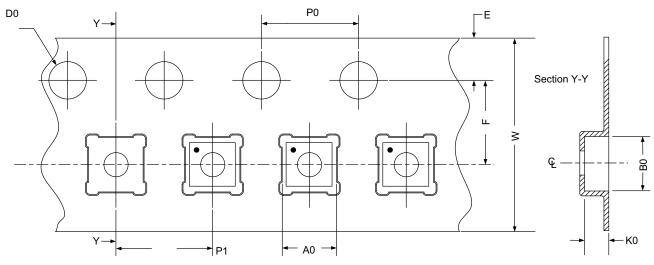
D .	ata			
	а т е	ISI	104	эт.
				~

An Ultra-small 3 mm², 8.5 m Ω , 4 A, Internally-protected Integrated Power Switch

Package Drawing and Dimensions

Unit: mn	า							
Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max	
Α	0.70	0.75	0.80	L	0.35	0.40	0.45	
A1	0.005	-	0.060	L1	0.515	0.565	0.615	
A2	0.15	0.20	0.25	L2	0.135	0.185	0.235	
b	0.15	0.20	0.25	е	0.50 BSC			
D	1.95	2.00	2.05	S	0.37 REF			
E	1.45	1.50	1.55					

8 Lead TDFN Package 1.5 x 2.0 mm (Fused Lead) JEDEC MO-252


An Ultra-small 3 mm², 8.5 m Ω , 4 A, Internally-protected Integrated Power Switch

Tape and Reel Specifications

Dookogo	# of	t of Nominal	Max Units		Reel &	Leader (min)		Trailer (min)		Таре	Part
	# of Pins	Package Size [mm]	per Reel	per Box	Hub Size [mm]	Pockets	Length [mm]	Pockets	Length [mm]		Pitch [mm]
TDFN 8L FC Green	8	1.5 x 2.0 x 0.75	3000	3000	178 / 60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions

Package Type	Pocket BTM Length	Pocket BTM Width	Pocket Depth	Index Hole Pitch	Pocket Pitch	Index Hole Diameter	Index Hole to Tape Edge	Index Hole to Pocket Cen- ter	Tape Width
	A0	B0	K0	P0	P1	D0	E	F	W
TDFN 8L FC Green	1.68	2.18	0.9	4	4	1.5	1.75	3.5	8

Refer to EIA-481 specification

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 2.25 mm³ (nominal). More information can be found at www.jedec.org.

_								
		ta	C	h	0	0	٠	
	α	ια	3		C	C	L	

Revision History

Date	Version	Change
9/13/2018	1.03	Updated EC Table Added RDS _{ON} chart
9/10/2018	1.02	Updated Style and Formatting Updated Block Diagram and Pin Description Updated EC Table Updated Typical Performance Characteristics Added Layout Guidelines
4/14/2016	1.01	Updated Abs. Max and EC tables
7/25/2014	1.00	Production Release