

User manual DA9061-63 Motherboard UM-PM-012

Abstract

Explains the setup and operation of the DA9061, DA9062, and DA9063 motherboard.

UM-PM-012

DA9061-63 Motherboard

Contents

Ab	stract	t			1
Co	ntents	S			2
Fig	jures.				2
1	1 Terms and definitions			3	
2	Intro	duction			4
	2.1	Links			5
	2.2	Motherb	oard features		7
		2.2.1	USB interface		7
		2.2.2	Control and IO sig	gnals	7
		2.2.3	PU/PD of IO sign	als and connection to USB	
		2.2.4	Voltage outputs f	rom DUT	9
			2.2.4.1 LDO)S	9
			2.2.4.2 Buck	<s< th=""><th> 10</th></s<>	10
		2.2.5	VDDIO select		10
		2.2.6	Test Pin (TP), PC	C mode and OTP programming mode	11
		2.2.7	On-board multiple	exer and ADC	
		2.2.8	I ² C interface		13
3					
Re	visior	۱ history.			

Figures

Figure 1: Motherboard assembly and jumper default setting diagram	4
Figure 2: USB interface (ULI: USB Lab IO)	7
Figure 3: Control and IO signals	
Figure 4: PU/PD and USB connections	8
Figure 5: PU/PD/USB schematic	9
Figure 6: LDO connectors	
Figure 7: BUCK connectors	10
Figure 8: BUCK connectors	11
Figure 9: VDDIO1/2 and VDDIO_GPIO	11
Figure 10: TP select, PCB	12
Figure 11: TP select, Schematic	12
Figure 12: MUX1	13
Figure 13: MUX2	13
Figure 14: I2C level shifter	

1 Terms and definitions

- DUT Device under test
- GUI Graphical user interface
- PMIC Power management IC
- ULI USB lab IO interface chip (Atmel)

2 Introduction

This document focuses on DA9061 and DA9062. The hardware solution is based upon Dialog PCB numbered 232-01-A.

This motherboard allows measurement, evaluation and programming of the DA9061, DA9062 or DA9063 devices.

The motherboard in Figure 1 allows different daughter boards to plug in, either with a socket or soldered, enabling different options for performance evaluations. The various daughter boards are described in a seperate document.

When the motherboard is connected to a PC via USB, the Device Under Test (DUT) can be controlled with the Smartcanvas GUI software. The mini USB connector is visible on the top-left side of the motherboard. As long as a cable is connected to the USB port of a PC, delivering ~5 V supply to the motherboard, the green LED 1 is on.

The Smartcanvas GUI provides easy access to the DUT through connectors J22/J49 and peripherals located on the motherboard connectors. It is used to exercise the DUT using the I²C or SPI (only for DA9063) interface. Control or measurement of analog and digital pins is also supported.

The board has jumper links to provide access to many configuration and measurement test points. For normal operation of DA9061 and DA9062 devices with the Smartcanvas GUI, the jumper links should be set as described in Figure 1 (red).

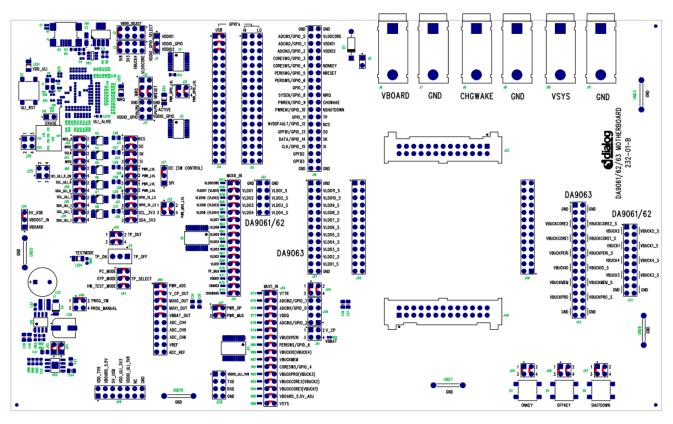


Figure 1: Motherboard assembly and jumper default setting diagram

The motherboard has a USB to I²C bridge for communication with the DUT, some external active measurement components (MUX, ADC), level shifters (I²C, GPIO) and power supply control devices (BOOST, LDO) reducing the need for external equipment.

Notes and limitations:

• The schematic of the motherboard is delivered with the hardware. Gerber data for the board are available on request.

Revision 2.0	06-Jan-2016
	Revision 2.0

UM-PM-012

DA9061-63 Motherboard

- All power outputs are available as pairs of pins to permit true Kelvin sensing of output voltage under load conditions.
- The board is intended to be supplied from a USB-host with approximate 5 V supply voltage. Onboard boost and LDOs are used to regulate the supply.
- The DUT is supplied separately by a single 3.6 V supply (nominal) plugged into the 4 mm sockets VSYS and GND. A Lithium ion battery may be used for the same purpose, or a 'sourcemeter' such as Keithley 2400 or Hameg 8142.
- To avoid unexpected behaviour (back drive, unwanted GPIO triggering) of the DUT, never disconnect the USB connection from the PC while the DUT is powered.

2.1 Links

Link	Position 1-2	Position 2-3 where applicable	Function
J2	VLDOCORE, or VBUCK4, or VDD_ULI_3v3, or VDDIO_ULI_1V8		Selects VDDIO1 for the DUT
J3	VLDOCORE, or VBUCK4, or VDD_ULI_3v3, or VDDIO_ULI_1V8		Selects VDDIO2 for the DUT
J4	VDDIO1	VDDIO2	Selects VDDIO_GPIO for the DUT
J5	To 5V_USB		Connects 5V_USB supply to VSYS. Note: Do not use with loaded regulators
J12	Position 3-5 To NIRQ (DUT)	Position 1-3 Do not use	Connects NIRQ to a 100 k Ω pull-up/down resistor
J12	Position 4-6 To NRESET (DUT)	Position 2-4 Do not use	Connects NRESET to a 100 kΩ pull- up/down resistor
J13	Position 1-3 To VDDIO_ULI_1V8		Connects supply for GPIO level shifter (ULI side)
J13	Position 2-4 To VDDIO_GPIO		Connects supply for GPIO level shifter (DUT side)
J14	To USB		Controls GPIOs and GPFB2, GPFB3 from USB device
J15	To ground	To VDDIO_GPIO	Connects GPIOs and GPFB2, GPFB3 to pre-selected voltage via 100 k Ω pull-up/down resistor
J17	Position 4-6 To GND	Position 2-4 To VDDIO_GPIO	Selects NIRQ pull-up/down
J17	Position 3-5 To GND	Position 1-3 To VDDIO_GPIO	Selects NRESET pull-up/down
J20	To USB	To USB	Connects MISO and NCS_0 to level shifter
J21	To DUT	To DUT	Connects SO and NCS to level shifter
J233	To USB	To USB	Connects SCLK and MOSI to level shifter
J234	To DUT	To DUT	Connects SK and SI to level shifter
J26	Position 1-3 To VDDIO_ULI_1V8		Connects supply for I ² C level shifter (ULI side)

Revision 2.0

Link	Position 1-2	Position 2-3 where applicable	Function
J26	Position 2-4 To VDDIO_GPIO		Connects supply for I ² C level shifter (DUT side)
J27	SPI	I2C / SW controlled	Select communication mode
J28	To USB	To USB	Connects SCL_ULI_0 and SDA_ULI_0 to level shifter
J29	Position 1-3 To VDDIO_ULI_1V8_I2C		Connects supply for I2C level shifter (ULI side)
J29	Position 2-4 To VDDIO_ULI_3V3		Connects supply for I2C level shifter (Peripheral side)
J30	To USB	To USB	Connects SCL_ULI_1 and SDA_ULI_1 to level shifter
J31	To DUT	To DUT	Connects GPIO14 and GPIO15 to level shifter
J33	Position 2-4 To VBOARD_5.5V		Connects supply for MUX addressing level shifter (MUX side)
J33	Position 1-3 To VBOARD_5.5V		Connects supply for MUX addressing level shifter (ULI side)
J34	To VBOARD	To 5V_USB	Select board supply (EXT/USB)
J35	To USB	To USB	Connects SCL_ULI_1 and SDA_ULI_1 to level shifter
J36	To peripheral	To DUT	Connects SCL_3V3 and SDA_3V3 to level shifter
J40	To TP	To MUX	Connects TP to MUX and TP select switch
J41	To MUX 1		Connects signal rails to MUX 1
J44	To TP select switch		Connects different voltage levels to S2
J45	Position 2-4 To VDD_ULI_3V3		Connects power supply for potentiometer
J45	Position 1-3 To VDD_ULI_3V3		Connects signal supply for potentiometer
J46	SW controlled	Manual control	Selects OTP programming mode
J47	Position 1-2 To VDD_7V5		Connects supply for OPAMPs
J47	Position 3-4 To VBOARD_5.5V		Connects supply MUXs
J48	To DUT		Connects analogue values from DAC to DUT
J50	To ADC		Connects mainly MUX outputs to ADC
J52	To LDO		Connects LDO to VBOARD_5.5V
J53	To VDD_7V5		Connects VDD_7V5 to LDO
J54	To MUX 2		Connects signal rails to MUX 2
J55	Position 1-3 To NONKEY		Connect USB interface to NONKEY
J55	Position 2-4		Connect pull-up to NONKEY

User manual

Revision 2.0

UM-PM-012

DA9061-63 Motherboard

Link	Position 1-2	Position 2-3 where applicable	Function
	To pull-up		
J56	Position 1-3 To OFFKEY		Connect USB interface to OFFKEY
J56	Position 2-4 To pull-up		Connect pull-up to OFFKEY
J57	Position 1-3 To SHUTDOWN		Connect USB interface to SHUTDOWN
J57	Position 2-4 To pull-up		Connect pull-up to SHUTDOWN
S2	Position left SW controlled	Position right Forced normal mode	TP select: Right => the TP pin is grounded via 10 kΩ pull-down Left => the TP pin is connected to the TP control matrix

2.2 Motherboard features

2.2.1 USB interface

The USB Interface U12 (top-left corner of the PCB) is used here mainly for three purposes:

- 1. As a source of I²C and SPI (DA9063 only) control signals.
- 2. To provide and read discrete signals from/to the GPIOs
- 3. To communicate with on-board peripherals

The USB device is powered via the USB bus cable through fixed LDO regulators.

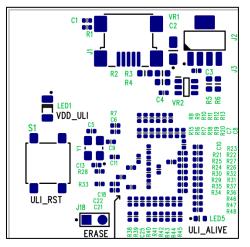


Figure 2: USB interface (ULI: USB Lab IO)

2.2.2 Control and IO signals

All of the control and IO signals from the DUT appear on the header pins shown on the left side, see Figure 3. These are the most useful monitor points for debug purposes. If required, a suitable connector can bring these signals to the system board for integrated development. If used in this way, the other links which also control these pins should be removed to avoid logic or voltage clash.

User	manual

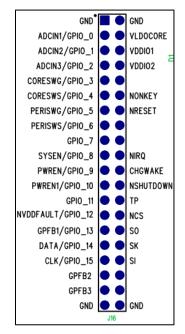


Figure 3: Control and IO signals

2.2.3 PU/PD of IO signals and connection to USB

The arrangement of the jumper links to the GPIO pins allows maximum flexibility.

Insert the jumpers in J14 for USB control and monitoring.

Place the jumpers in J15 on the left side to connect VDDIO_GPIO via 100 k Ω pull-up resistors, on the right side to connect ground via 100 k Ω pull-down resistors, or leave it open for external connections (see Figure 5).

	45.4
USB	GPIO's
USB	
•	
J14	J15
	015

Figure 4: PU/PD and USB connections

llser	manual	
USEI	manuai	

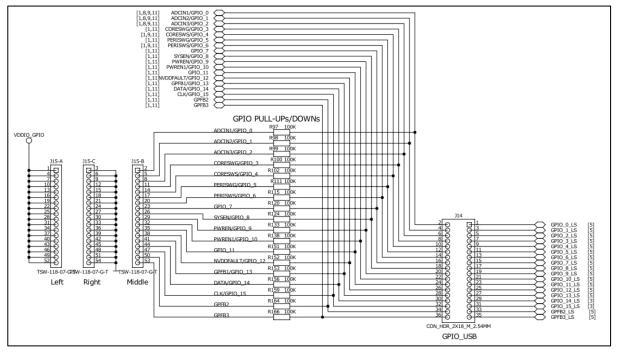


Figure 5: PU/PD/USB schematic

2.2.4 Voltage outputs from DUT

2.2.4.1 LDOs

The pin headers to access the LDO regulators from the DUT are located on the left side of the DUT connectors. Depending on the connected DUT type either J32 (DA9061/62) or J37 (DA9063) is valid.

They are arranged in pairs (left: thick power lines, right: thin sense line for Kelvin connection) for meaningful measurements under load conditions.

Each pin is connected separately to the regulator output, to a point closest to the device pin.

If required, a suitable connector can bring these signals to the system board for integrated development.

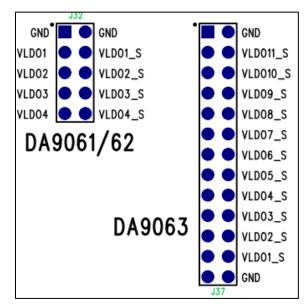


Figure 6: LDO connectors

User manual	Revision 2.0

© 2016 Dialog Semiconductor

2.2.4.2 Bucks

The pin headers to access the Buck regulators from the DUT are located on the right side of the DUT connectors. Depending on the connected DUT type either J43 (DA9061/62) or J42 (DA9063) is valid.

They are arranged in pairs (left: thick power lines, right: thin sense line for Kelvin connection) for meaningful measurements under load conditions.

Each pin is connected separately to the regulator output, to a point as close as possible to the device pin.

If required, a suitable connector can bring these signals to the system board for integrated development.

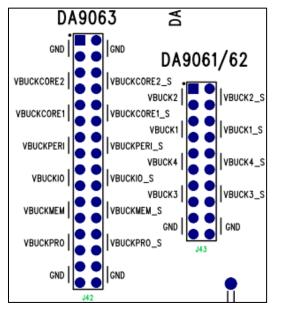
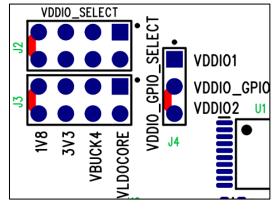


Figure 7: BUCK connectors

The left connections (for example VBUCK1) are routed with wide PCB traces, while the right connections (for example VBUCK1_S) are routed with narrow PCB traces. The right connections are intended as Kelvin sense points, to allow regulator output measurement without effect from PCB resistance. This connection is not ideal since the plug that the daughterboard is mounted on adds some parasitic resistance at each pin which produces a small error when under load. For accurate performance measurements under load it is suggested to connect directly to the daughterboard pins.

2.2.5 VDDIO select


This group of links allows selection of the VDDIO_GPIO voltage rail, for example for GPIO pull-up.

VDDIO_GPIO can be selected via VDDIO1 or VDDIO2 (VDDIO2 shown in example), each supplied either from VBUCKIO (VBUCK4), VLDOCORE, external 3.3 V or external 1.8 V. External voltages are supplied by the USB via external LDOs.

VDDIO1/2 can be selected by J2/J3 and VDDIO_GPIO can be selected through VDDIO1/2 via J4.

U	ser	manual	
-			

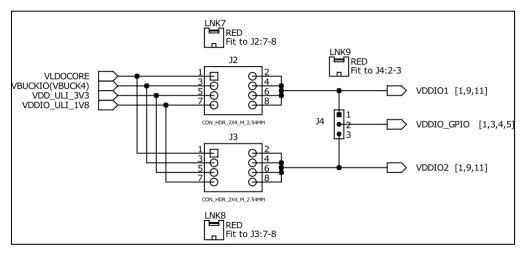


Figure 8: BUCK connectors

A VDDIO1/2 voltage may cause back-powering of DUT from the VDDIO rail, particularly when external supplies are used (1.8 V, 3.3 V) without main VSYS supply. This may keep the digital core of the DUT powered, thereby preventing a POR of the logic and leading to undesired operating modes.

The VDDIO1/2 and VDDIO_GPIO selection is shown in the diagram below.

Figure 9: VDDIO1/2 and VDDIO_GPIO

2.2.6 Test Pin (TP), PC mode and OTP programming mode

The TP select switch selects between normal mode and Power Commander (PC) mode/OTP programming mode.

If configured in the right-hand position (TP_OFF), the TP pin of the DUT is grounded via a 10 k Ω pulldown resistor, thereby selecting normal mode operation. In this case the register settings are loaded from a programmed OTP.

If configured on the left-hand position (TP_ON), the TP can be connected to higher voltage levels.

The Smartcanvas GUI automatically selects the desired level, where 5 V activates the PC mode and 7.5 V activates the OTP programming mode or 0 V to select normal operation mode.

In PC mode, register settings are loaded from a file through the software interface.

US	er	ma	int	Jai

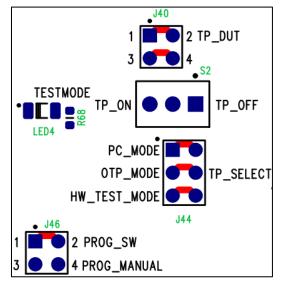


Figure 10: TP select, PCB

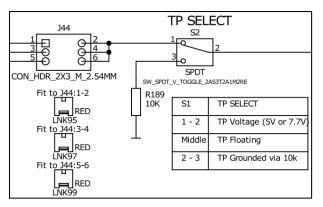


Figure 11: TP select, Schematic

If a mode apart from normal mode is selected, a red LED (LED4) indicates that the TP test mode pin is supplied with a level other than 0 V.

2.2.7 On-board multiplexer and ADC

The motherboard has two multiplexers (MUX) where all power lines and some GPIOs from the DUT are connected. The output of the MUX is measured via an external ADC.

The front panel of the Smartcanvas GUI shows the most important measurements for a quick overview of the DUT.

NOTE

For precise measurements, use calibrated equipment only.

In some cases (such as quiescent current measurements) the input channels might need to be disconnected from the MUX. This can be done by removing the jumper links on J41 and J54.

U	ser	manual	
-		manaa	

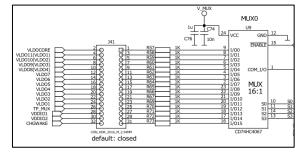


Figure 13: MUX2

2.2.8 I²C interface

The USB controller (ULI) provides two I²C master busses to communicate with connected I²C slaves.

The DUT communicates with the controller with bus0 (SDA/SCL_ULI_0), while bus1 (SDA/SCL_ULI_1) is used to communicate with all other peripherals on the motherboard.

Both busses have their own level shifter between master and slave. These level shifters can be disconnected from the slave by removing jumper links.

For bus0 only, J24 (DA906x) and J24/J31 (DA9063 only) can be opened to connect to a customer system board for integrated development.

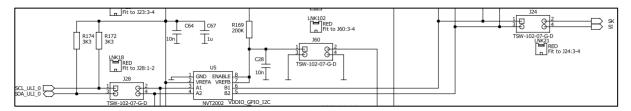


Figure 14: I2C level shifter

3 Hardware issues

Most hardware problems can be traced to incorrect jumper positions.

Check jumper positions carefully and compare them with the default positions: see Figure 1. Use the jumper table details and the board schematic as a guide to jumper functions and locations.

NOTE

When using the GUI to select a mode, the Power Commander switch must be in the left-hand position.

13 of 15

Revision history

Revision	Date	Description
1.0	12-Jan-2015	Initial version
2.0	06-Jan-2016	Changed references to Smartcanvas GUI.
		Typographical edits.

Status definitions

Status	Definition	
DRAFT	The content of this document is under review and subject to formal approval, which may result in modifications or additions.	
APPROVED or unmarked	The content of this document has been approved for publication.	

Disclaimer

Information in this document is believed to be accurate and reliable. However, Dialog Semiconductor does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information. Dialog Semiconductor furthermore takes no responsibility whatsoever for the content in this document if provided by any information source outside of Dialog Semiconductor.

Dialog Semiconductor reserves the right to change without notice the information published in this document, including without limitation the specification and the design of the related semiconductor products, software and applications.

Applications, software, and semiconductor products described in this document are for illustrative purposes only. Dialog Semiconductor makes no representation or warranty that such applications, software and semiconductor products will be suitable for the specified use without further testing or modification. Unless otherwise agreed in writing, such testing or modification is the sole responsibility of the customer and Dialog Semiconductor excludes all liability in this respect.

Customer notes that nothing in this document may be construed as a license for customer to use the Dialog Semiconductor products, software and applications referred to in this document. Such license must be separately sought by customer with Dialog Semiconductor.

All use of Dialog Semiconductor products, software and applications referred to in this document are subject to Dialog Semiconductor's Standard Terms and Conditions of Sale, unless otherwise stated.

© Dialog Semiconductor. All rights reserved.

RoHS Compliance

Dialog Semiconductor complies to European Directive 2001/95/EC and from 2 January 2013 onwards to European Directive 2011/65/EU concerning Restriction of Hazardous Substances (RoHS/RoHS2). Dialog Semiconductor's statement on RoHS can be found on the customer portal https://support.diasemi.com/. RoHS certificates from our suppliers are available on request.

Contacting Dialog Semiconductor

United Kingdom (Headquarters) Dialog Semiconductor (UK) LTD Phone: +44 1793 757700

Germany

Dialog Semiconductor GmbH Phone: +49 7021 805-0

The Netherlands

Dialog Semiconductor B.V. Phone: +31 73 640 8822

Email: enquiry@diasemi.com

User manual

North America

Dialog Semiconductor Inc. Phone: +1 408 845 8500

Japan

Dialog Semiconductor K. K. Phone: +81 3 5425 4567

Taiwan

Dialog Semiconductor Taiwan Phone: +886 281 786 222 Web site:

Taiwan Dia

Dialog Semiconductor Korea Phone: +82 2 3469 8200

Phone: +852 3769 5200

Phone: +65 64 8499 29

Dialog Semiconductor Singapore

Dialog Semiconductor Hong Kong

China (Shenzhen)

Dialog Semiconductor China Phone: +86 755 2981 3669

China (Shanghai) Dialog Semiconductor China Phone: +86 21 5424 9058

www.dialog-semiconductor.com
Revision 2.0

Singapore

Hong Kong

06-Jan-2016

15 of 15

© 2016 Dialog Semiconductor